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Abstract Simulated allocation models (SAMs) are used to
evaluate organ allocation policies. An important component
of SAMs is a module that decides whether each poten-
tial recipient will accept an offered organ. The objective of
this study was to develop and test accept-or-decline classi-
fiers based on several machine-learning methods in an effort
to improve the SAM for liver allocation. Feature selec-
tion and imbalance correction methods were tested and best
approaches identified for application to organ transplant
data. Then, we used 2011 liver match-run data to com-
pare classifiers based on logistic regression, support vec-
tor machines, boosting, classification and regression trees,
and Random Forests. Finally, because the accept-or-decline
module will be embedded in a simulation model, we also
developed an evaluation tool for comparing performance
of predictors, which we call sample-path accuracy. The
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Random Forest method resulted in the smallest overall error
rate, and boosting techniques had greater accuracy when
both sensitivity and specificity were simultaneously con-
sidered important. Our comparisons show that no method
dominates all others on all performance measures of inter-
est. A logistic regression-based classifier is easy to imple-
ment and allows for pinpointing the contribution of each
feature toward the probability of acceptance. Other methods
we tested did not have a similar interpretation. The Scien-
tific Registry of Transplant Recipients decided to use the
logistic regression-based accept-decline decision module in
the next generation of liver SAM.
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1 Introduction

The extreme shortage of transplantable human organs in
the United States leads to long waiting times and wait-
list deaths for patients with end-stage organ diseases, and
necessitates prioritizing matched candidates for each avail-
able organ. Pursuant to the National Organ Transplant Act
(NOTA), the difficult task of setting allocation priorities
rests with the Organ Procurement and Transplantation Net-
work (OPTN), whose contractor is United Network of
Organ Sharing (UNOS). The Scientific Registry of Trans-
plant Recipients (SRTR) supports organ transplant oper-
ations by performing policy evaluation [18]. The Health
Resources and Services Administration, US Department
of Health and Human Services, provides oversight of the
activities of the OPTN and SRTR contractors.

SRTR is tasked with development, maintenance, and dis-
tribution of computer simulation programs, called simulated
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allocation models (SAMs), used to evaluate the impact of
allocation policies on organ distribution, waitlist statistics,
and posttransplant outcomes. There are three SAMs, one
each for assessing allocation policies for livers (LSAM),
kidney-pancreas (KPSAM), and thoracic organs (TSAM).
Each SAM simulates candidate and donor arrivals, can-
didate health status updates, and candidate accept-decline
decisions regarding organs offered in the priority sequence
dictated by a current or proposed allocation policy.

This study concerns a module in LSAM that predicts can-
didate accept or decline decisions. We refer to the module
as a classifier because it classifies each matched candidate-
donor pair into decline (denoted by N) or accept (denoted by
Y) categories. The classifier must produce realistic results
based on donor, candidate, and policy attributes that drive
such decisions in practice. The accept-or-decline classi-
fier is one of the most important SAM modules because
it directly affects performance metrics that OPTN commit-
tees consider before implementing policy changes. We used
historical match-run data to train and compare five classifi-
cation techniques, as part of a broader program to improve
SAMs.

LSAM was first developed in 2001 for OPTN. Its pre-
decessor, the UNOS liver allocation model (ULAM) [20],
was also a simulation model. ULAM’s candidate-choice
model was relatively simple. Each candidate accepted the
offered organ with a probability that equaled the historical
acceptance rate within a stratum defined by the transplant
center, candidate medical urgency status, and donor quality
[12]. Other simulation-based studies used matching crite-
ria to assign organs to candidates without considering their
choices [16, 21, 25].

The current LSAM includes a logistic regression (LR)-
based model, similar in some respects to the model in
ULAM. A major difference is that the LSAM LR model
provides a unique acceptance probability for each donor and
candidate pair, whereas ULAM used common acceptance
rates in each stratum. Also, for non-urgent candidates, the
LSAM LR model uses 147 variables consisting of donor and
candidate characteristics, whereas ULAM used less than 10
variables [29].

Modeling candidate choices has been the focus of several
articles in the Operations Research/Management Science
(ORMS) literature, summarized in Table 1. These models
consider the accept-or-decline problem faced by rational
decision makers (candidates and surgeons) when organ
offers are received. If the decision maker accepts the offer,
a reward equal to the expected posttransplant life-years is
realized. If the offer is declined, a reward equal to the
expected remaining life-years of the candidate is realized,
upon accounting for optimal decisions with respect to future
organ offers and candidate health status evolution. A key
difference between these approaches and our efforts is that

we focus on predicting accept or decline decision as closely
as possible to the actual decisions made by candidates.
In contrast, ORMS literature focuses on developing pre-
scriptive models that predict how rational candidates should
make such decisions.

The key insight from these studies is that an optimal
policy for a candidate can be described by a series of thresh-
olds. For each fixed health status, a donor quality threshold
exists such that the candidate should accept the organ if
quality is above this threshold. Similarly, for each donor
quality, a threshold of health status exists such that if a can-
didate’s health status is below the threshold (worse health),
the candidate should accept the organ. Each threshold typ-
ically changes monotonically. For example, the quality
threshold monotonically decreases as the candidate’s health
status worsens. Monotonicity may not hold when rank infor-
mation is considered. In such cases, rank movements can
induce a candidate to deviate from monotone thresholds
because of changed expectation about future offers. Models
summarized in Table 1 are useful for understanding the key
drivers of a decision maker’s choice, but they are not suit-
able for implementation within LSAM for reasons discussed
below.

The first difficulty in implementing normative models
relates to the problem of estimating candidates’ utility func-
tions. Data are insufficient to allow this for every candidate
individually. For practical reasons, candidates are grouped
into subsets with the assumption that members of the same
set have the same utility function. Within each group, it
is typically assumed that all candidates assign the same
mean utility to the same organ but that a particular can-
didate’s actual utility has a random component with mean
zero. Such a model can be shown to be equivalent to the
LR model when the random component of utility function
in each class has a logistic distribution. That is, the LR
method already provides a practical implementation of the
normative approach under certain assumptions.

The second difficulty is that decisions under ideal con-
ditions assumed in normative models may not match actual
candidate choices. Candidates may have insufficient infor-
mation about an available donor to evaluate the life-years
to be gained from transplant, or their life expectancy if an
offer is declined. These uncertainties, coupled with possibly
time-varying degree of risk aversion, can lead to different
decisions even for donors who are similar with respect to
characteristics available in our dataset. For these reasons,
we did not consider a normative approach.

Bertsimas et al.[3] compared different classifiers on sev-
eral different data sets, though not on organ transplant data.
The authors calculated overall classification accuracy and
found that none of the methods they considered consistently
dominated others across different data sets. In our set-
ting, the data are highly imbalanced and there are multiple
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Table 1 Summary of candidate-choice models in operations research literature

Author(s) Organ Health status Queue rank Monotone policy Modeling

update known? structure? methodology

David, Yechiali [9] Kidney No No Yes MDP∗

Ahn, Hornberger [1] Kidney Partial† No Yes MDP∗

Howard [13] Liver Yes No Yes MDP∗

Su, Zenios [27] Kidney Partial† No Yes Queueing

Su, Zenios [26] Kidney No Yes Yes MDP∗

Alagoz et al. [2] Liver Yes No Yes MDP∗

Sandikci et al. [22] Liver Yes Yes No MDP∗

Sandikci et al. [23] Liver Yes Yes No POMDP‡

*MDP, Markov decision process.
†For candidate functional status only (waiting, underwent transplant, died). In these studies, disease progression is not modeled.
‡POMDP, partially observable Markov decision process.

measures of accuracy. Comparing classifiers across differ-
ent accuracy measures gives a similar outcome as com-
paring classifiers across different data sets. That is, in
our setting also, none of the classifiers dominates all oth-
ers on all performance measures. To our knowledge, no
previous study has compared accuracy of different classifi-
cation methods in the context of organ transplants or across
different measures of accuracy.

Greater penetration of health information technology,
in particular electronic medical record systems, has made
it possible to collect and store large amounts of patient-
level data in easy-to-access electronic format. Health care
delivery organizations are increasingly interested in uti-
lizing these data to predict adverse health outcomes and
using such predictive tools to target resources toward high-
risk patients. The problem of identifying high-risk patients
falls into the broad category of classification, similar to the
problem we studied in this paper. We believe our study
provides some generalizable insights for healthcare prac-
titioners and analysts who may want to consider machine
learning approaches for classification. We expect that the
two types of data limitations we identified in this paper will
be common in other healthcare data. Specifically, our data
were imbalanced with many more negative responses, and
there were no labels attached to the vast majority of donor-
candidate pairs. The missing responses were consistently for
donor-candidate pairs with lower-ranked candidates. This
made it difficult to learn/impute the missing responses in a
reliable fashion.

In cases similar to ours, it is important to pay attention
to which measures of classifier accuracy are important and
tune the classifier appropriately. This study also highlights
that biased predictors may produce better overall accuracy
and that the costs associated with false positives or false
negatives may drive the choice of classifier. Finally, our

study highlights that there may not be a single classifier
that dominates others on all metrics of interest. This makes
it necessary to train classifiers differently, depending on
application-specific priorities.

2 Background

NOTA divided the US into 11 regions, which are fur-
ther divided into approximately 58 donation service areas
(DSAs), each served typically by a single organ procure-
ment organization (OPO). Candidates registered at a trans-
plant center within the DSA served by an OPO are consid-
ered local candidates for all donors in that DSA. Regional
candidates are registered at transplant centers outside the
DSA but within the DSA’s region. All other candidates are
classified as national candidates. According to current pol-
icy, livers are typically placed locally first, then regionally,
and last nationally. Within this geographical priority sys-
tem, candidates with more severe liver disease, as measured
by model for end-stage liver disease (MELD) or pediatric
end-stage liver disease (PELD) score, have higher prior-
ity. The highest-priority candidates are those with fulminant
liver failure. They are classified as 1A (age older than 18
years) or 1B (age up to 18 years). After a donor is identified,
UNOS at the request of the OPO runs a match algorithm
that rank orders waitlisted candidates according to current
allocation priority. The OPO then makes offers to transplant
centers in the match-run order. Typically, offers are made in
batches with 2 or 3 transplant centers receiving offers for a
few of their highest-ranked candidates in each batch. Within
each batch of offers, a successful placement occurs if one
candidate accepts the organ. Otherwise, the OPO may make
additional offers, exercise an expedited placement protocol,
or terminate the offer process.
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When a transplant center receives a tentative offer, it need
not make a firm decision until its turn arrives, i.e., until all
preceding candidates turn down the offer. In some centers,
a staff person makes tentative initial decisions according to
rules provided by transplant surgeons. These fall into two
categories: N (no) or Z (provisional yes). We did not have
access to rules used by any transplant center to initially clas-
sify offers into N or Z. Therefore, we are unable to comment
on which rules might be used by which transplant centers.
However, anecdotally, we think that such rules may relate
to donor-candidate age, gender, race, height, weight, and
blood-type match. When the center’s turn arrives, a surgeon
may reconsider a Z-classified offer and make the final deci-
sion in consultation with the candidate. Thus, the tentative Z
is converted into a firm N or Y (yes). Tentative Z responses
later changed to Y or N are not recorded. In the match-run
data, which was used to perform the analysis reported in this
paper, only the final decisions were recorded. Therefore,
we did not know how many donor-candidate pairs initially
received Z responses and were later converted to N. We did
know that exactly one such match was converted to Y, if
any. Moreover, once a Y was identified, candidates that had
lower ranks and initially responded as Z typically left their
responses as Z.

If a liver is to be split, which usually occurs when part of
the liver is offered to a child candidate, the transplant cen-
ter whose candidate first accepted the organ decides who
will receive the split organ. The recipient is usually a child
candidate registered at the center in question. Because of
how initial responses are obtained, decisions recorded in the
match-run data that come after the first Y decision are not
considered reliable because such responses include both ini-
tial Z decisions and N decisions from centers that accept
offers for higher-ranked candidates. Also, most matched
candidates do not receive offers because the offer process
terminates once a Y is identified and OPOs make offers
in small batches. Candidates know their allocation prior-
ity when their center receives an offer. This priority is also
called the Potential Transplant Recipient (PTR) sequence
number.

The PTR sequence number is determined by the match-
run algorithm, which implements the current organ allo-
cation rules. UNOS provides the PTR sequence numbers
to OPOs when a donor is identified. For each donor and
each organ, the PTR sequence numbers determine each
matched candidate’s allocation priority. The highest priority

Table 3 Offers up to the first yes

Candidate type Number of accepts (Y) Number of declines (N)

All 5,722 (5.2 %) 104,019 (94.8 %)

1A 250 (15.3 %) 1,385 (84 %)

Not-1A 54,729 (5.1 %) 102,634 (94.9 %)

candidate is ranked 1 and subsequent candidates’ ranks
increment by 1.

In this study, we focused only on the first Y deci-
sion. That is, we did not consider splitting of livers or
instances in which the OPO terminated the offer pro-
cess without realizing organ placement. When candi-
dates are bypassed, they do not receive offers, which
is how we model such situations. This simplifies the
classification problem into a binary classification, N
or Y for each offer. Because our goal was to study
the relative merits of using different approaches, the
restricted problem setting serves as an appropriate test
case.

After certain data manipulation steps, described in
detail in the Appendix, 376 possible features per matched
candidate-donor are selected for study. Statistics from the
2011 liver match-run data are summarized in Tables 2
and 3.

3 Methods

With only two labels (Y or N), the problem of predict-
ing candidate responses within LSAM is the classic binary
classification problem. Our approach involves three key
steps: feature selection, imbalance correction, and classi-
fication. We briefly describe methods considered for each
step in this section and include additional details in the
Appendix. Figure 1 shows the sequence of tasks performed.

We chose the methods described below because they
performed well in previous studies. Each method was
implemented in MATLAB using publicly available libraries
(http://www.mathworks.com/products/matlab/).

3.1 Feature selection methods

The three categories of feature selection methods are fil-
ters, wrappers, and embedded methods [35]. Filters are easy

Table 2 Transplantable livers
and transplants Total To 1A To 1B To Not-1A/1B Discarded

transplanted candidates candidates candidates livers

5,675 (89.5 %) 247 (3.9 %) 57 (0.9 %) 5371 (84.7 %) 664 (10.5 %)

http://www.mathworks.com /products/matlab/
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Fig. 1 Task flow chart

to use; they find the most important features or the impor-
tance score of each feature independently of the classifiers
used. Wrappers find the best subset of features by per-
forming evaluation of features during classifier training, but
feature evaluation and training occur independently of each
other. In embedded methods, feature selection is an inte-
gral part of training, i.e., feature selection and training occur
simultaneously. Therefore, feature selection is tailored to
the classification method. Wrappers and embedded meth-
ods are computationally demanding and run a high risk of
over-fitting.

We compared four different filters: Fisher score [10],
RELIEF [15], correlation based filter [34], and informa-
tion gain [8]. Details are presented in the Appendix (see
Appendix A). We chose filters because our dataset was
large, with the result that wrapper and embedded approaches
were not practical in our setting.

3.2 Imbalance correction methods

Because of the nature of the organ placement process, train-
ing data are highly imbalanced with many negative labels
and only a few positive labels. As a result, classifiers tend
to ignore classification errors of positive labels. To appre-
ciate this problem, consider a classifier that provides all
negative labels. In our setting, this classifier would be
about 95 % accurate because nearly 95 % of the observa-
tions have the N label. Therefore, remedial measures are
necessary.

Three widely used techniques deal with imbalanced
data: under-sampling, over-sampling, and different error
costs (DEC). Under-sampling discards some observations
belonging to the majority class. The resulting data set has
an equal number of observations for both classes. Dis-
carded observations are selected based on redundancy and
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closeness to the boundary that separates the two labels
[17]. Over-sampling can be considered the dual of under-
sampling. It creates artificial observations for the minority
class by interpolation. Sufficient numbers of artificial obser-
vations are generated to realize equal numbers of observa-
tions across the two classes [7]. The DEC technique assigns
different costs to errors resulting in false negatives and false
positives. Because our data include many more negatives
than positives, we assign a higher cost to false negatives
when using this method [31].

Upon testing, we found that the under-sampling tech-
nique worked best in our setting because it is compu-
tationally more efficient than the other methods and at
least as good as other approaches with respect to clas-
sifier accuracy. It also avoids the difficulties of creating
artificial observations for over-sampling or choosing error
costs for the DEC approach. The specific under-sampling
approach we used is described in detail in the Appendix (see
Appendix B).

3.3 Classifiers

We present brief descriptions of classifiers that were tested.
Additional details can be found in the cited references.

Logistic Regression (LR) [19] LR is a maximum-likelihood
approach that fits the following model to the data to estimate
coefficients βi :

ln

(
p

1 − p

)
= β0 + β1x1 + · · · + βnxn + ε, (1)

where xi are the features of each matched donor-candidate
pair, p is the probability of positive response, and ε denotes
the error term. We tested two versions of LR, LR un-
weighted (LR[u]) and LR weighted (LR[w]). LR[w] applied
a weight of 1 to negative labels and a weight equal to the
ratio of the number of negative labels to the number of posi-
tive labels to the positive labels in an attempt to correct data
imbalance.

Support Vector Machine (SVM) [6] SVM finds a hyper
plane separating observations by label class that produces
the widest gap between the closest observations of each
class and the hyper plane. It has two generalizations: the soft
margins approach allows misclassification with penalty; the
kernel mapping method transforms the separating hyper
plane into a nonlinear boundary. Gaussian kernel is the most
commonly used kernel method.

Boosting (Adaptive or Gentle) [24] Boosting is an ensem-
ble method. It generates a large number of computationally

cheap and weak classifiers. Each successive weak classifier
is designed to improve accuracy of prediction on misclassi-
fied observations by an earlier classifier. The predicted label
is the one that receives the highest weighted sum of votes
among all label classes. The difference between Adaptive
boosting (AdaBoost) and Gentle boosting (GentleBoost)
lies in the specification of the loss function. The loss func-
tion in Gentle boosting dampens the effect of outliers, which
helps prevent over-fitting.

Classification and Regression Trees (CART) [4] The classi-
fication tree method constructs a decision tree by splitting
the training data set into subsets according to the values of
certain features. Splitting is repeated until only one class
label remains at each node. Misclassifications are penalized.
CART is the base predictor in Random Forest.

Random Forest (RF) [5] RF is also an ensemble method.
At each step, it uses a random subset of observations and
applies the CART methodology to this random sample.
The process of bootstrapping and developing trees is con-
tinued until a user-specified number of trees is obtained.
Predictions are based on votes received from each clas-
sification tree. We compared two versions of RF. In one
instance, we first corrected for imbalance using under-
sampling and then selected random subsets of observations.
In the second (called RF-RUS), data were treated by ran-
dom under-sampling and we controlled the ratio of positive
and negative responses to increase both sensitivity and
specificity.

4 Training objective

Many machine-learning techniques require users to choose
optimal parameters by tuning the algorithm over a training
sample. This step is also referred to as cross-validation. The
parameters of the algorithm are tuned to realize best perfor-
mance according to a user-specified objective. Because it is
difficult to rank order parameter choices when users have
multiple objectives, it is often necessary to specify a single
aggregate training objective. For reasons explained below,
the choice of an appropriate training objective is in itself a
challenging task in our setting.

In order to meet OPTN objectives, the classifier embed-
ded in LSAM needs to simultaneously perform well on
several objectives. Examples of such objectives include
minimize overall error rate, minimize the maximum of false
positive and false negative rates, and minimize the amount
by which the classifier over- or under-predicts the PTR
sequence number of the first candidate who accepts each
organ. The latter is important because outcome statistics
such as life-years from transplant are calculated for the
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candidate who is projected to accept the organ in the simu-
lated model, and such statistics are sensitive to a whole host
of candidate characteristics. We also point out that it is typ-
ically the case that with a fixed dataset, higher accuracy in
terms of reduced false positives can be achieved only at the
expense of increased false negatives.

In our setting, the dataset available to train classifiers has
several limitations, which makes it difficult to simultane-
ously achieve good performance on the above-mentioned
metrics. The first limitation, which we mentioned earlier,
is that the vast majority of valid responses are negative
responses. This makes it much easier to achieve higher
accuracy in predicting negative outcomes. Concomitantly,
correctly predicting positive responses is much harder. In
addition, the data contain valid responses only up to the
first candidate who accepts the organ. That is, we do not
know how lower-ranked candidates would have responded
if they had received offers. A significant fraction of organs
are accepted by the first few PTR sequence number can-
didates resulting in a highly skewed distribution of PTR
sequence numbers at acceptance (see Fig. 2). This makes it
difficult to learn what candidate and donor features result
in the organ being rejected by high-PTR-sequence-number
candidates and accepted by a particular lower-ranked candi-
date. In fact, if we target higher accuracy of PTR sequence
numbers, then this invariably requires sacrificing accu-
rate prediction for candidates with high PTR sequence
numbers.

From many possible alternatives, we used the G-metric
as the training objective in our analysis. G-metric is
the square root of the product of sensitivity and speci-
ficity [28]. Sensitivity measures the proportion of positives
that are correctly classified and specificity measures the
proportion of negatives that are correctly classified. A
high G-metric means high accuracy with respect to both
positive and negative classifications simultaneously. We
wish to emphasize that the classifiers we studied can be
trained with respect to other objectives, depending on user
preference.

Fig. 2 Frequency of PTR sequence number at first yes

5 Performance measure

The ultimate test of a classifier in our setting is how well
it performs in a simulation of current allocation policy,
i.e., how well it predicts the outcome metrics of interest to
OPTN relative to realized outcomes. Therefore, we focused
on the attributes of the first candidate to accept an offer
in reality and compared those to the attributes of the can-
didate who was projected to accept the same offer under
simulation. We call such accuracy the sample-path accuracy
because it refers to the realized features of each candidate
who accepts the offer.

We introduced a measure of prediction accuracy under
simulation, which we call sample-path square root of mean
square errors (SMSE). To calculate the sample-path SMSE,
we ran a simulation and tracked accept or decline labels in
the test data for each value of the performance measure of
interest. As an example, consider the subset of candidates
with Y labels who have MELD score mi . Let ai denote the
number of such donor-candidate pairs in the test data. Next,
let yij denote the MELD score of the j -th first-yes candi-
date, so labeled by a particular classifier, among match runs
to which the ai pairs belong. Note that mi , ai , and yij are
defined for each, i = 1, · · · , k, where k is the number of
categories and j = 1, · · · , ai . The sample-path SMSE is
then calculated as follows.

SME =

√√√√√√√√
k∑

i=1

⎛
⎜⎜⎜⎝

ai∑
j=1

(yij − mi)2

ai

⎞
⎟⎟⎟⎠ (2)

The purpose of this study is not to change clinical prac-
tice, but rather to improve a computer simulation program
that predicts how current and future changes in allocation
policy will affect the efficiency and fairness of the organ
allocation system. As such, we are interested in predicting
outcomes such as life-years from transplant, graft failures,
waitlist statistics by age, gender, race, and blood type, and
a whole host of other similar measures, as a function of the
allocation policy. All of these measures depend on the char-
acteristics of the candidate to whom the simulation model
assigns the organ for each simulated donor arrival. For this
reason, we felt compelled to develop a performance mea-
sure that captures the differences between the characteristics
of the candidate who is predicted to accept an organ and
the actual candidate who accepted the organ. The reason we
used square root of mean square errors is that such measures
have a long history in statistics. By squaring the differences,
we are able to penalize large differences more than small
differences.
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6 Results

We first obtained rank-ordered feature sets according to
each of the four feature selection methods and then tested
the accuracy of each classifier trained on feature sets
obtained by each feature selection method. Upon testing 4x6
combinations, we found that the information gain method
resulted in the highest G-metric for all classifiers. There-
fore, we used only those features that were predicted by the
information gain method in all subsequent analysis. A list of
the top 50 features appears in the Appendix (see Tables 13
and 15). Following each table, we also provide a correla-
tion matrix among the top 10 features for each candidate
type. The correlation structure does not affect the theoretical
basis of machine learning methods, although the selection
of highly correlated features does not improve prediction.
Correlations among features do affect the LR model. A
variety of techniques, such as Ridge regression [19], Prin-
ciple Component Regression [14], and Partial Least Square
Regression [33] may be employed to account for such cor-
relations. In this study, we used the filter approach (see
Section 3.1) to select features because our data were too
large for other methods to be practical in conjunction with
machine learning algorithms. Therefore to be consistent
when comparing classifiers, we did not employ techniques

to account for correlations among features just for the LR
model. We recognize that all classifiers could be improved
by further refining feature selection.

Note that correlations are generally low. In Table 14,
moderately high correlations are observed between F1 and
F2, which are PTR Sequence Number and PTR Waiting
Time in Category, and between F5 and F6, which are Age
Ratio and Weight Ratio. Both these are intuitively under-
standable. Candidates who have waited longer tend to be
relatively well and therefore have a larger sequence number.
Sicker patients are removed from the queue because they
receive an organ, or die, or become too sick for transplant.
Similarly, both donors and candidates tend to weigh more
when they are older, which explains the correlation between
F5 and F6. A similar pattern is observed in Table 16 as well.

Next, we performed a test in which for each of the five
classification methods we selected 50, 30, and 10 top-ranked
features and trained each classifier. We then used this tuned
classifier on the test data to determine accuracy according to
the G-metric. Results showed that the accuracy of classifiers
did not increase substantially upon selecting more than 30
features for 1A and more than 10 features for not-1A candi-
dates. For sample path comparisons, we chose the smallest
subset of features (10 for not-1A and 50 for 1A) from
thosesubsets that either resulted in the highest G-metric or

Table 4 Classification accuracy comparisons (best outcomes are shown in bold font)

Candidate type Model Error rate Sensitivity Specificity G-metric

1A

LR[u] 22.35 % 28.57 % 84.56 % 49.15 %

LR[w] 32.94 % 61.90 % 67.79 % 64.78 %

SVM 40.59 % 80.95 % 56.38 % 67.56 %

AdaBoost 42.35 % 95.24 % 52.35 % 70.61 %

GentleBoost 38.24 % 80.95 % 59.06 % 69.15 %

Random Forest 37.06 % 80.95 % 60.40 % 69.93 %

CART 47.06 % 66.67 % 51.01 % 58.31 %

RF-RUS 21.18 % 47.62 % 83.22 % 62.95 %

Not-1A

LR[u] 9.06 % 17.63 % 95.14 % 40.95 %

LR[w] 30.78 % 70.68 % 69.14 % 69.90 %

SVM 24.27 % 87.81 % 75.08 % 81.20 %

AdaBoost 15.23 % 86.00 % 84.70 % 85.34 %

GentleBoost 14.50 % 86.16 % 85.46 % 85.81 %

Random Forest 14.89 % 85.67 % 85.08 % 85.37 %

CART 19.37 % 74.79 % 80.96 % 77.82 %

RF-RUS 6.98 % 47.45 % 95.63 % 67.36 %

CART = classification and regression trees; LR[u] = logistic regression un-weighted

LR[w] = logistic regression weighted

RF-RUS = Random Forest method with data not first treated for imbalance

SVM, support vector machines

Number of features: 10 for not-1A, 50 for 1A
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were within 0.5 % of the highest G-metric. Parsimonious
models are preferred because they avoid over-fitting.

The top 10 features for not-1A candidates are:
Donor/Candidate Weight Ratio, Donor/Candidate Height
Ratio, Urgency Status Date (number of days since achiev-
ing urgent status), Waiting Time Category (waiting time
points awarded), Match MELD, Total score for the candi-
date on the match (refers to points related to ABO match and
wait time), Donor/Candidate Age ratio PTR Sequence Num-
ber, Candidate’s Weight, and Minimum acceptable Donor
Weight. Note that the numbers of transplant centers within
100, 200 and 300 miles of the donor hospital, which we
believed would be correlated with cold ischemic time, were
also relevant but not in the top-10 set of features. The fact
that these attributes are most informative in determining a
Y or N classification is highly relevant. Whereas it does
not demonstrate a causal relationship, it does inform that
in the aggregate these features are correlated with candi-
dates’ decisions. In ORMS literature, donor characteristics
and candidate health status are modeled as separate scalar
quantities. Our investigation reveals that there is interaction
between donor and candidate characteristics for the purpose
of understanding candidates’ accept or decline decisions.

Accuracy of each classifier for not-1A and 1A candi-
dates is shown in Table 4. The RF-RUS method had the
smallest error rate, but boosting techniques yield the highest
G-metric. Figures 3 and 4 show non-dominated classi-
fiers when both sensitivity and specificity are considered
together. RF-RUS, LR[w], and AdaBoost are not dominated
for 1A candidates, and RF-RUS, GentleBoost, and SVM
are not dominated for 1A candidates. Figure 5 shows sam-
ple path accuracy relative to the average performance of all
classifiers for each performance metric of interest. Positive

Fig. 3 Sensitivity-specificity plot for 1A candidates. CART, classi-
fication and regression trees; LR[u], logistic regression un-weighted;
LR[w], logistic regression weighted; RF, Random Forest; RF-RUS,
Random Forest method with data not first treated for imbalance; SVM,
support vector machines

Fig. 4 Sensitivity-specificity plot for not-1A candidates. CART, clas-
sification and regression trees; LR[u], logistic regression un-weighted;
LR[w], logistic regression weighted; RF, Random Forest; RF-RUS,
Random Forest method with data not first treated for imbalance; SVM,
support vector machines

(negative) values indicate better (worse) than average per-
formance. The best classifiers by performance metric
are: GentleBoost for MELD and RF-RUS for PTR number,
LRN, and Status. Actual values of SMSE are presented in
the Appendix (see Table 12).

7 Discussion

The final choice of a classifier depends on the preferred
accuracy criterion and the importance of other factors
such as ease of implementation and interpretation. The LR
method is easy to implement and allows pinpointing the
contribution of each feature toward the probability of accep-
tance. Machine-learning methods do not have a similar
interpretation. Although machine-learning algorithms can
be optimized to run quite fast, they still consume more com-
putational effort than LR implementation. SRTR decided to
use the LR method in the next generation of LSAM, after
optimizing it further.

In addition to improving LSAM, classifiers developed
in this study can be used to support operational decisions.
For example, OPOs can be given information regarding the
chances of placing an organ within a prespecified number
of offers. This can help guide OPOs in making expedited
placements and bypassing placement decisions when such
decisions could result in a greater chance of successful
placement. Because our models include variables that were
not considered in previous models, e.g., PTR sequence num-
ber; number of transplant centers within a 100, 200, and
300 mile radius; and estimated travel times [11], we believe
our predictive models can be useful to OPOs in making
offer decisions. Classification methods that do not depend
on candidate geographic location information can also help
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illuminate the effect of different local, regional, and national
priority schemes.

8 Conclusion

This study is the first to perform a systematic evaluation of
different classification methods for possible application
in organ transplant operations. Using real data from 2011,
we selected best features, corrected for imbalance, trained
classifiers, and evaluated classification and sample-path
accuracy. We found that information gain was the best
method for feature selection, and that under-sampling was
the most suitable method for correcting imbalance. We did
not find a classifier that dominated all others according to
classification and sample-path measures of accuracy. Efforts
to improve accuracy for each performance metric involve
tradeoffs. We find that greater overall accuracy typically im-
plies greater prediction bias, i.e., significantly higher accu-
racy in predicting negative as opposed to positive responses.
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Appendix

In this appendix, we explain methods used in our paper
for binary classification. These techniques are also appli-
cable to multi-class problems. In addition, we provide
cross-validation results on training sample and performance
comparisons on test data in Tables 6 7 8 9 10 11 in
the Appendix. Table 12 shows sample path SMSE com-
parisons for different performance criteria. Tables 13 and
15 contain lists of top 50 features selected by the Infor-
mation Gain feature selection method for 1A and not-1A
candidates respectively. These tables are provided in sup-
port of the abridged results presented in the paper. We
begin by describing data coding procedures we used in this
study.

All potentially relevant attributes associated with each
donor-candidate pair are called features. We coded

categorical variables with several categories into binary
variables, e.g., race with 8 basic categories and 3 additional
options for missing, multi-racial, and unknown categories,
was coded into 11 0-1 variables. This resulted in an origi-
nal data set of 554 features from three sources: match run,
candidate, and donor features. We eliminated those features
that were either empty or were not known to the candidates
at the time of receiving an offer. For example, only those
lab values were retained that were received before the offer
date. We also removed certain features that could lead to
over-fitting to the existing allocation policy. For example,
candidate designation as local, regional, or national, rela-
tive to the donor OPO was not considered. Similarly, TxC
indices were dropped. We instead created several variables
that could explain TxC-specific strategies. In particular, we
calculated and included the number of TxCs within 100,
200, and 300 miles of the donor hospital to capture the effect
of competition among TxCs. We also included travel times
between donor hospital and TxC where each candidate was
located [11].

We coded certain features differently from how they
appeared in the original data. For example, surgeons indi-
cated that the donor and candidate weight, height, and age
ratios were important to them in making accept or decline
decisions. Therefore, we created features that consisted of
these ratios and removed redundant features.

After the above-mentioned data manipulation steps, our
data consists of 3,140 livers transplanted from deceased
donors with n = 59,510 valid observations (donor-patient
pairs with Y/N responses) from 2011 match-run data, each
comprising a vector x = {x1, x2, ..., xk} of donors’ and
candidates’ characteristics and a label y that is either 1
(for accept) or -1 (for decline). The parameter k = 376
denotes the number of relevant characteristics. Throughout
this appendix, we also use (xi , yi) to denote the i-th obser-
vation. Similarly, the notation xij refers to the value of the
j th feature in the ith observation. There are four sections
in this appendix, which provide, respectively, the mathe-
matical underpinnings of feature selection and imbalance
correction methods, information about MATLAB imple-
mentation of different methods, and cross validation and test
results.

Appendix A: Feature selection

As described in the paper, we focus on filter methods [35].
In what follows, we describe each of the four methods we
compared in the paper.

A.1 Fisher score

Fisher score measures the dissimilarity of feature values
across different classes. Since it treats features one at a
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Fig. 5 Relative sample path performance. CART, classification and
regression trees; LRN, local, regional, or national; LR[u], logistic
regression un-weighted; LR[w], logistic regression weighted; MELD,
model for end-stage renal disease; PTR, potential transplant recipient;

RF, Random Forest; RF-RUS, Random Forest method with data not
first treated for imbalance; Status, 1A, 1B, or MELD candidate; SVM,
support vector machines

time,it cannot consider the redundancy of features [10]. It
calculates a score for each feature. Features with higher
scores are preferred because a higher score implies greater
differences in feature values across different label classes.
For a feature labeled fj , its Fisher Score FS(fj ) is calcu-
lated as follows:

FS(fj ) =
∑2

z=1 nz(μj,z − μj )
2

∑2
j=1 nzσ

2
j,z

, where (3)

μj : the mean value of the feature fj for all classes,
nz: the number of samples in the zth class,
μj,z: the mean value of fj within class z, and
σj,z: the variance of fj values within class z.

A.2 Relief

Relief is a weighting method in which the weights are
determined by measuring distances between the value of
a feature for a particular observation and its value for the
nearest same and different class observations [15]. The

feature that provides the widest overall gap earns the highest
weight. In particular, the score of a feature is calculated as
follows:

RS(fj ) = 1

2

n∑
i=1

diff(xij −fNM(xij ))−diff(xij −fNH(xij )),

(4)

where xij is the value of j th feature of ith instance xi ,
fNH(xij ) and fNM(xij ) are the values on the j th feature of
nearest points to xi with the same and different class label,
respectively [35]. The function diff(·) is the distance mea-
surement defined as following. When u and v are nominal
variables,

diff(u, v) =
{

0 if u = v

1 otherwise.
(5)

When u and v are numerical variables,

diff(u, v) = |u − v|
Nu

, (6)
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where Nu is an appropriately sized normalization unit
needed to make the difference lie in the interval [0,1].

A.3 Information Gain (IG)

Information Gain measures the dependency between the
feature and the class label [8]. It is widely used because it is
simple to calculate and easy to interpret. In order to explain
Information Gain, we first define the concept of entropy.
Entropy R(U) of random variable U ∈ U with probability
mass function p(u) is defined by

R(U) = −
∑
u∈U

p(u) log2 p(u). (7)

Entropy R(U) is a measure of uncertainty of the ran-
dom variable U . Similarly, conditional entropy R(U |V ) is
defined as

R(U |V ) =
∑
u∈U

p(u)R(V |U = u) (8)

= −
∑
u∈U

P(u)
∑
y∈V

p(v|u) log p(v|u) (9)

= −
∑
u∈U

∑
v∈V

p(u, v) log p(v|u) (10)

= E log p(V |U) (11)

With these definitions in hand, the Information Gain
(IG) of feature fj for class label Y is calculated as
follows:

IG(Xfj
, Y ) = R(Xfj

) − R(Xfj
|Y ) (12)

For each label class, features are ranked in terms of Informa-
tion Gain. Similar to Fisher score, IG considers each feature
one at a time. Therefore, it cannot eliminate redundant
features.

A.4 Correlation Based Filter (CBF)

This method uses the correlations between features and
class labels and between features to eliminate redundant
features [34]. There are several ways to measure corre-
lation between features and labels, and between features.
We present Fast CBF, which we used in the paper. In
this method symmetrical uncertainty (SU) is employed to
measure correlation. SU is defined as follows:

SU(u, v) = 2

[
IG(u, v)

R(u) + R(v)

]
(13)

Table 5 The CBF algorithm

1. for j = 1 to k

calculate SU(xfj
, y) for feature fj

if SU(xfj
, y) ≥ δ , append feature j to Slist

2. end

3. sort Slist in descending SU(xfj
, y)

4. set base feature, fb = first element of Slist

5. Do

fq = fb

while (fq �= NULL)

fq = next element of Slist after fq

if SU(xfq , xfb
) ≥ SU(xfq , y) , remove fq from Slist

end

fb = next element of Slist after fb

6.end

7.Sbest = Slist

where R(u) and IG(u, v) is defined (7) and (12),
respectively.

The algorithm used by the CBF method is presented in
Table 5. At the beginning, CBF chooses a set of features
according to SU between features and class labels. If the
SU between a feature and labels is higher than a predefined
threshold (δ), then the feature is selected as a predominant
feature, i.e., it then belongs to the set Slist . All features
that are not selected as predominant features are discarded.
Then, the feature with the highest SU with a class label
becomes a base feature (fb). If the SU between a feature(fq )
and the base feature(fb) is higher than that between a
feature(fq ) and class label, then that feature is dropped
from the list. The next highest feature in the predominant
list then becomes the base feature and the above process
is repeated until no additional features can be dropped. All
other methods described in this appendix provide a relative
rank of each feature, leaving the task of selecting which
features to use for tuning classifiers to the analyst. In con-
trast, CBF actually selects a certain number of features by
itself.

Appendix B: Treating imbalanced data: under-sampling

Because we have many more observations with the N label,
we use under-sampling to balance the number of observa-
tions within each label class. It is possible to use random
selection to decide which N-labeled observations to keep
in the training data. However, there exist better methods
that select important observations. We describe one such
approach [17]. In this approach, we remove two kinds of
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Fig. 6 Under-Sampling; Observations in the Two Envelopes are
Removed

observations: redundant and Tomek links. Redundant obser-
vations do not hurt the classifier, but increase classification
error cost of the N-class labels. In contrast, Tomek links
are observations located near the boundary; see Fig. 6 for
a graphical representation. These observations affect the
classifier and their noisiness can lower the accuracy of the
classifier if they are not removed.

Redundant observations are identified by using the One
Nearest Neighbor (denoted 1-NN) method. 1-NN is one of
the simplest classification methods that finds the nearest
observation from each tagged observation and assigns to it
the same label as that of its nearest neighbor. For implement-
ing 1-NN, distance is calculated by the Value Difference
Metric (VDM), which is shown below [32].

VDMfi
(u, v) =

2∑
c=1

∣∣∣∣Nfi,u,c

Nfi,u

− Nfi,v,c

Nfi,v

∣∣∣∣
q

=
2∑

c=1

∣∣Pfi,u,c − Pfi,v,c

∣∣q , (14)

where

– Nfi,u: the number of instances in the training set (T)
that have value u for feature fi ,

– Nfi,u,c: the number of instances in T that have value u

for feature fi and class c,
– c: output class. c ∈ {1, 2}, for binary classification.
– q: a constant, usually 1 or 2, and
– Pfi,u,c: conditional probability that the output class is

c given that the attribute fi has value u, Pfi,u,c =
P(c|u, fi).

Finally, Pfi,u,c is defined as

Pfi,u,c = Nfi,u,c

Nfi,u

, (15)

and Nfi,u is the sum of Nfi,u over all classes. That is,

Nfi,u =
C∑

c=1

Nfi,u,c. (16)

Tomek links are defined as follows. Let δ(xi , xj ) rep-
resent the distance between observations xi and xj with
different class labels. The pair (xi , xj ) is called a Tomek
link if there is no observation xk such that δ(xi , xk) <

δ(xi , xj ) and δ(xk, xj ) < δ(xi , xj ) [30].
With these definitions in hand, the under-sampling algo-

rithm has the following steps: (i) create a subset S with
all the Y labeled observations, (ii) select one N-labeled
observation at random and apply 1-NN, (iii) if the 1-NN
observation is misclassified, then add the N-labeled obser-
vation to set S, else remove it from further consideration,
(iv) repeat the procedure by selecting each N-labeled obser-
vation one by one until all such observations are considered,
and finally (v) among data points in subset C, find Tomek-
link observations and remove them. The resulting set S is
the under-sampled training data set.

Appendix C: MATLAB Code

MATLAB codes we used for feature selection are avail-
able from Feature Selection Group’s web site at the Arizona
State University (featureselection.asu.edu).

– Fisher score: fsFisher.m
– Relief: fsReliefF.m
– CBF: fsFCBF.m
– Information Gain: fsInfoGain.m

We used MATLAB(R2012b) functions from statis-
tics toolbox for classifiers (details can be found at the
following URL: www.mathworks.com/products/statistics/
description4.html).

– Logistic Regression : glmfit.m with the option, ’binomial’
– SVM : svmtrain.m
– Boosting : fitensemble.m with the options,

’AdaBoostM1’ and ’GentleBoost’
– RF : treebagger.m
– CART : classregtree.m

Appendix D: Cross-validation and test results

This Appendix contains cross-validation and test results,
as well as top features identified by the Information

featureselection.asu.edu
www.mathworks.com/products/statistics/description4.html
www.mathworks.com/products/statistics/description4.html
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Table 6 Cross-validation
results for 1A CM FS # of Features Error rate Accuracy Sensitivity Specificity G-metric

LR[u] Fisher score 50 29.26 % 70.74 % 26.47 % 80.52 % 46.17 %
30 30.32 % 69.68 % 32.35 % 77.92 % 50.21 %
20 18.09 % 81.91 % 0.00 % 100.00 % 0.00 %
10 73.40 % 26.60 % 97.06 % 11.04 % 32.73 %

RELIEF 50 31.91 % 68.09 % 32.35 % 75.97 % 49.58 %
30 27.66 % 72.34 % 14.71 % 85.06 % 35.37 %
20 25.00 % 75.00 % 41.18 % 82.47 % 58.27 %
10 25.53 % 74.47 % 29.41 % 84.42 % 49.83 %

CBF 12 27.66 % 72.34 % 17.65 % 84.42 % 38.60 %
Information gain 50 27.13 % 72.87 % 38.24 % 80.52 % 55.49 %

30 29.79 % 70.21 % 23.53 % 80.52 % 43.53 %
20 27.13 % 72.87 % 23.53 % 83.77 % 44.40 %
10 29.26 % 70.74 % 29.41 % 79.87 % 48.47 %

LR[w] Fisher score 50 27.13 % 72.87 % 61.76 % 75.32 % 68.21 %
30 40.43 % 59.57 % 67.65 % 57.79 % 62.53 %
20 42.55 % 57.45 % 67.65 % 55.19 % 61.10 %
10 46.28 % 53.72 % 55.88 % 53.25 % 54.55 %

RELIEF 50 42.55 % 57.45 % 47.06 % 59.74 % 53.02 %
30 44.15 % 55.85 % 32.35 % 61.04 % 44.44 %
20 43.09 % 56.91 % 52.94 % 57.79 % 55.31 %
10 55.85 % 44.15 % 52.94 % 42.21 % 47.27 %

CBF 12 44.15 % 55.85 % 35.29 % 60.39 % 46.17 %
Information gain 50 38.30 % 61.70 % 52.94 % 63.64 % 58.04 %

30 37.23 % 62.77 % 52.94 % 64.94 % 58.63 %
20 34.57 % 65.43 % 67.65 % 64.94 % 66.28 %
10 48.40 % 51.60 % 38.24 % 54.55 % 45.67 %

SVM Fisher score 50 30.32 % 69.68 % 73.53 % 68.83 % 71.14 %
30 51.06 % 48.94 % 88.24 % 40.26 % 59.60 %
20 76.06 % 23.94 % 97.06 % 7.79 % 27.50 %
10 79.26 % 20.74 % 97.06 % 3.90 % 19.45 %

RELIEF 50 35.11 % 64.89 % 64.71 % 64.94 % 64.82 %
30 42.02 % 57.98 % 67.65 % 55.84 % 61.46 %
20 38.30 % 61.70 % 64.71 % 61.04 % 62.85 %
10 48.40 % 51.60 % 61.76 % 49.35 % 55.21 %

CBF 12 46.28 % 53.72 % 79.41 % 48.05 % 61.77 %
Information gain 50 43.09 % 56.91 % 82.35 % 51.30 % 65.00 %

30 45.21 % 54.79 % 82.35 % 48.70 % 63.33 %
20 47.87 % 52.13 % 82.35 % 45.45 % 61.18 %
10 46.81 % 53.19 % 88.24 % 45.45 % 63.33 %

AdaBoost Fisher score 50 42.55 % 57.45 % 73.53 % 53.90 % 62.95 %
30 40.43 % 59.57 % 73.53 % 56.49 % 64.45 %
20 81.38 % 18.62 % 100.00 % 0.65 % 8.06 %
10 81.38 % 18.62 % 100.00 % 0.65 % 8.06 %

RELIEF 50 37.77 % 62.23 % 61.76 % 62.34 % 62.05 %
30 40.96 % 59.04 % 50.00 % 61.04 % 55.24 %
20 36.70 % 63.30 % 55.88 % 64.94 % 60.24 %
10 43.62 % 56.38 % 55.88 % 56.49 % 56.19 %

CBF 12 38.83 % 61.17 % 58.82 % 61.69 % 60.24 %
Information gain 50 44.15 % 55.85 % 85.29 % 49.35 % 64.88 %

30 42.55 % 57.45 % 79.41 % 52.60 % 64.63 %
20 41.49 % 58.51 % 76.47 % 54.55 % 64.58 %
10 38.83 % 61.17 % 70.59 % 59.09 % 64.58 %
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Table 7 Cross-validation
results for 1A - continued CM FS # of Features Error rate Accuracy Sensitivity Specificity G-metric

GentleBoost Fisher score 50 36.17 % 63.83 % 67.65 % 62.99 % 65.28 %

30 47.34 % 52.66 % 73.53 % 48.05 % 59.44 %

20 76.60 % 23.40 % 100.00 % 6.49 % 25.48 %

10 79.79 % 20.21 % 100.00 % 2.60 % 16.12 %

RELIEF 50 39.89 % 60.11 % 58.82 % 60.39 % 59.60 %

30 40.96 % 59.04 % 55.88 % 59.74 % 57.78 %

20 37.23 % 62.77 % 61.76 % 62.99 % 62.37 %

10 43.09 % 56.91 % 58.82 % 56.49 % 57.65 %

CBF 12 33.51 % 66.49 % 70.59 % 65.58 % 68.04 %

Information gain 50 43.09 % 56.91 % 76.47 % 52.60 % 63.42 %

30 43.62 % 56.38 % 61.76 % 55.19 % 58.39 %

20 45.21 % 54.79 % 67.65 % 51.95 % 59.28 %

10 44.68 % 55.32 % 58.82 % 54.55 % 56.64 %

Random forest Fisher score 50 35.64 % 64.36 % 70.59 % 62.99 % 66.68 %

30 43.62 % 56.38 % 73.53 % 52.60 % 62.19 %

20 76.06 % 23.94 % 97.06 % 7.79 % 27.50 %

10 79.26 % 20.74 % 97.06 % 3.90 % 19.45 %

RELIEF 50 37.23 % 62.77 % 70.59 % 61.04 % 65.64 %

30 38.83 % 61.17 % 70.59 % 59.09 % 64.58 %

20 40.43 % 59.57 % 73.53 % 56.49 % 64.45 %

10 43.62 % 56.38 % 61.76 % 55.19 % 58.39 %

CBF 12 36.17 % 63.83 % 61.76 % 64.29 % 63.01 %

Information gain 50 42.02 % 57.98 % 79.41 % 53.25 % 65.03 %

30 42.55 % 57.45 % 76.47 % 53.25 % 63.81 %

20 39.36 % 60.64 % 76.47 % 57.14 % 66.10 %

10 40.43 % 59.57 % 58.82 % 59.74 % 59.28 %

CART Fisher score 50 50.00 % 50.00 % 76.47 % 44.16 % 58.11 %

30 48.94 % 51.06 % 58.82 % 49.35 % 53.88 %

20 81.38 % 18.62 % 100.00 % 0.65 % 8.06 %

10 81.38 % 18.62 % 100.00 % 0.65 % 8.06 %

RELIEF 50 34.04 % 65.96 % 44.12 % 70.78 % 55.88 %

30 33.51 % 66.49 % 58.82 % 68.18 % 63.33 %

20 48.40 % 51.60 % 67.65 % 48.05 % 57.01 %

10 45.21 % 54.79 % 52.94 % 55.19 % 54.06 %

CBF 12 39.36 % 60.64 % 44.12 % 64.29 % 53.26 %

Information Gain 50 43.62 % 56.38 % 61.76 % 55.19 % 58.39 %

30 43.62 % 56.38 % 61.76 % 55.19 % 58.39 %

20 42.55 % 57.45 % 61.76 % 56.49 % 59.07 %

10 47.87 % 52.13 % 58.82 % 50.65 % 54.58 %

Gain feature selection method. Many machine learning
models have one or more control parameters, e.g., σ

in kernel for SVM. Before the final evaluation of our

final model, we need to tune these control param-
eters. We divided the data into three groups; train-
ing (60 %), cross-validation(20 %), and test (20 %)
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Table 8 Cross-validation
results for Not-1A CM FS # of Features Error rate Accuracy Sensitivity Specificity G-metric

LR[u] Fisher score 50 8.76 % 91.24 % 9.09 % 95.37 % 29.45 %
30 9.38 % 90.62 % 6.73 % 94.84 % 25.27 %
20 9.35 % 90.65 % 4.88 % 94.96 % 21.53 %
10 9.29 % 90.71 % 4.55 % 95.04 % 20.78 %

RELIEF 50 8.59 % 91.41 % 16.50 % 95.18 % 39.63 %
30 8.98 % 91.02 % 9.26 % 95.13 % 29.68 %
20 9.33 % 90.67 % 6.57 % 94.90 % 24.96 %
10 9.07 % 90.93 % 6.73 % 95.16 % 25.31 %

CBF 8 8.93 % 91.07 % 11.62 % 95.07 % 33.23 %
Information Gain 50 8.91 % 91.09 % 20.88 % 94.62 % 44.44 %

30 6.83 % 93.17 % 20.54 % 96.82 % 44.59 %
20 8.81 % 91.19 % 19.87 % 94.78 % 43.39 %
10 9.27 % 90.73 % 18.52 % 94.36 % 41.80 %

LR[w] Fisher score 50 40.53 % 59.47 % 59.09 % 59.49 % 59.29 %
30 49.83 % 50.17 % 52.69 % 50.04 % 51.35 %
20 50.29 % 49.71 % 50.17 % 49.69 % 49.93 %
10 49.26 % 50.74 % 52.53 % 50.65 % 51.58 %

RELIEF 50 33.24 % 66.76 % 68.69 % 66.66 % 67.66 %
30 41.79 % 58.21 % 56.90 % 58.27 % 57.58 %
20 43.93 % 56.07 % 53.54 % 56.20 % 54.85 %
10 44.55 % 55.45 % 55.56 % 55.45 % 55.50 %

CBF 8 38.73 % 61.27 % 57.91 % 61.44 % 59.65 %
Information gain 50 31.63 % 68.37 % 73.57 % 68.11 % 70.79 %

30 31.83 % 68.17 % 68.18 % 68.16 % 68.17 %
20 32.70 % 67.30 % 70.20 % 67.15 % 68.66 %
10 35.07 % 64.93 % 69.36 % 64.71 % 67.00 %

SVM Fisher score 50 33.20 % 66.80 % 74.07 % 66.47 % 70.17 %
30 92.01 % 7.99 % 99.83 % 3.38 % 18.36 %
20 92.34 % 7.66 % 99.83 % 3.03 % 17.39 %
10 92.55 % 7.45 % 100.00 % 2.80 % 16.74 %

RELIEF 50 23.83 % 76.17 % 75.55 % 76.23 % 75.89 %
30 25.52 % 74.48 % 49.41 % 75.76 % 61.18 %
20 32.33 % 67.67 % 56.66 % 68.24 % 62.18 %
10 30.92 % 69.08 % 53.37 % 69.87 % 61.06 %

CBF 8 16.86 % 83.14 % 45.45 % 85.04 % 62.17 %
Information gain 50 22.54 % 77.46 % 83.64 % 77.21 % 80.36 %

30 23.18 % 76.82 % 82.80 % 76.58 % 79.63 %
20 26.10 % 73.90 % 85.50 % 73.38 % 79.21 %
10 28.98 % 71.02 % 85.86 % 70.31 % 77.69 %

AdaBoost Fisher score 50 31.06 % 68.94 % 71.04 % 68.83 % 69.93 %
30 93.38 % 6.62 % 100.00 % 1.92 % 13.86 %
20 93.38 % 6.62 % 100.00 % 1.92 % 13.86 %
10 93.38 % 6.62 % 100.00 % 1.92 % 13.86 %

RELIEF 50 18.60 % 81.40 % 71.89 % 81.88 % 76.72 %
30 31.01 % 68.99 % 58.92 % 69.49 % 63.99 %
20 31.60 % 68.40 % 60.27 % 68.81 % 64.40 %
10 33.43 % 66.57 % 55.56 % 67.12 % 61.07 %

CBF 8 29.04 % 70.96 % 66.50 % 71.19 % 68.80 %
Information gain 50 14.40 % 85.60 % 82.66 % 85.75 % 84.19 %

30 14.47 % 85.53 % 82.32 % 85.69 % 83.99 %
20 15.12 % 84.88 % 81.14 % 85.07 % 83.09 %
10 15.30 % 84.70 % 81.82 % 84.84 % 83.32 %
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Table 9 Cross-validation
results for Not-1A - continued CM FS # of Features Error rate Accuracy Sensitivity Specificity G-metric

GentleBoost Fisher score 50 27.39 % 72.61 % 73.06 % 72.59 % 72.83 %

30 92.49 % 7.51 % 99.83 % 2.87 % 16.92 %

20 92.39 % 7.61 % 99.83 % 2.98 % 17.24 %

10 92.60 % 7.40 % 100.00 % 2.75 % 16.58 %

RELIEF 50 18.02 % 81.98 % 74.41 % 82.36 % 78.28 %

30 30.59 % 69.41 % 59.43 % 69.92 % 64.46 %

20 31.05 % 68.95 % 58.92 % 69.45 % 63.97 %

10 32.52 % 67.48 % 55.05 % 68.11 % 61.23 %

CBF 8 23.12 % 76.88 % 61.45 % 77.66 % 69.08 %

Information gain 50 14.46 % 85.54 % 84.01 % 85.61 % 84.81 %

30 14.49 % 85.51 % 83.67 % 85.61 % 84.63 %

20 14.66 % 85.34 % 83.00 % 85.45 % 84.22 %

10 14.87 % 85.13 % 81.82 % 85.30 % 83.54 %

Random forest Fisher score 50 31.77 % 68.23 % 73.91 % 67.94 % 70.86 %

30 92.06 % 7.94 % 99.83 % 3.33 % 18.22 %

20 92.34 % 7.66 % 99.83 % 3.03 % 17.39 %

10 92.55 % 7.45 % 100.00 % 2.80 % 16.74 %

RELIEF 50 20.13 % 79.87 % 74.75 % 80.13 % 77.39 %

30 31.92 % 68.08 % 60.61 % 68.45 % 64.41 %

20 33.84 % 66.16 % 59.93 % 66.47 % 63.12 %

10 35.45 % 64.55 % 51.18 % 65.22 % 57.77 %

CBF 8 28.02 % 71.98 % 62.46 % 72.46 % 67.27 %

Information gain 50 14.57 % 85.43 % 84.01 % 85.50 % 84.75 %

30 14.62 % 85.38 % 84.01 % 85.45 % 84.73 %

20 14.45 % 85.55 % 83.84 % 85.63 % 84.73 %

10 14.89 % 85.11 % 82.15 % 85.26 % 83.69 %

CART Fisher score 50 40.11 % 59.89 % 62.29 % 59.77 % 61.02 %

30 92.53 % 7.47 % 99.83 % 2.83 % 16.80 %

20 92.87 % 7.13 % 99.83 % 2.47 % 15.71 %

10 92.60 % 7.40 % 100.00 % 2.75 % 16.58 %

RELIEF 50 25.66 % 74.34 % 63.47 % 74.88 % 68.94 %

30 35.50 % 64.50 % 55.05 % 64.97 % 59.81 %

20 36.82 % 63.18 % 57.91 % 63.44 % 60.61 %

10 34.89 % 65.11 % 52.36 % 65.75 % 58.67 %

CBF 8 31.88 % 68.12 % 56.90 % 68.68 % 62.51 %

Information gain 50 18.85 % 81.15 % 72.56 % 81.58 % 76.94 %

30 18.74 % 81.26 % 75.08 % 81.57 % 78.26 %

20 19.25 % 80.75 % 72.22 % 81.18 % 76.57 %

10 19.21 % 80.79 % 74.07 % 81.13 % 77.52 %

data sets. We build a model with training data and
tune the control parameters by intermediate evaluation
with cross-validation, and the final model evaluation
is done with test data set. The cross-validation helps

us not only tune parameters but also prevent over-
fitting.

Tuning objective is maximizing G-metric except for RF-
RUS (RF with Random Under Sampling).
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Table 10 Performance: test
data set with information gain
for 1A

CM # of Features Error rate Accuracy Sensitivity Specificity G-metric

LR[u] 50 22.35 % 77.65 % 28.57 % 84.56 % 49.15 %

30 22.94 % 77.06 % 33.33 % 83.22 % 52.67 %

10 22.94 % 77.06 % 28.57 % 83.89 % 48.96 %

LR[w] 50 32.94 % 67.06 % 61.90 % 67.79 % 64.78 %

30 40.00 % 60.00 % 61.90 % 59.73 % 60.81 %

10 34.71 % 65.29 % 71.43 % 64.43 % 67.84 %

SVM 50 40.59 % 59.41 % 80.95 % 56.38 % 67.56 %

30 45.29 % 54.71 % 76.19 % 51.68 % 62.75 %

10 47.06 % 52.94 % 76.19 % 49.66 % 61.51 %

AdaBoost 50 42.35 % 57.65 % 95.24 % 52.35 % 70.61 %

30 34.71 % 65.29 % 85.71 % 62.42 % 73.14 %

10 38.82 % 61.18 % 76.19 % 59.06 % 67.08 %

GentleBoost 50 38.24 % 61.76 % 80.95 % 59.06 % 69.15 %

30 36.47 % 63.53 % 76.19 % 61.74 % 68.59 %

10 37.65 % 62.35 % 61.90 % 62.42 % 62.16 %

Random forest 50 37.06 % 62.94 % 80.95 % 60.40 % 69.93 %

30 35.29 % 64.71 % 85.71 % 61.74 % 72.75 %

10 37.06 % 62.94 % 61.90 % 63.09 % 62.49 %

CART 50 47.06 % 52.94 % 66.67 % 51.01 % 58.31 %

30 47.06 % 52.94 % 66.67 % 51.01 % 58.31 %

10 43.53 % 56.47 % 61.90 % 55.70 % 58.72 %

RF-RUS 50 21.18 % 78.82 % 47.62 % 83.22 % 62.95 %

In the cross-validation and test result tables,

– CM: Classification Method
– FS: Feature Selection Method
– # of Features: the number of features we selected from

the top of the list
– Error rate: percent of observations that were incorrectly

classified
– Accuracy: percente of observations that were correctly

classified
– Sensitivity: Accuracy only within positive class

– Specificity: Accuracy only within negative class
– G-metric: the square root of the product of sensitivity

and specificity

Because CBF determines the number of features by itself,
it had only 12 and 8 features in the lists for 1A and Not-1A,
respectively. In all other cases, we obtained a rank ordered
list of all features. Information Gain resulted in the best G-
metric for all methods in cross-validation results. Therefore,
we used the feature set provided by the Information Gain
method to finalize parameters of each classifier.
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Table 11 Performance: test
data set with information gain
for Not-1A

CM # of features Error rate Accuracy Sensitivity Specificity G-metric

LR[u] 50 9.06 % 90.94 % 17.63 % 95.14 % 40.95 %

30 7.68 % 92.32 % 19.28 % 96.49 % 43.13 %

10 8.94 % 91.06 % 15.82 % 95.36 % 38.84 %

LR[w] 50 30.78 % 69.22 % 70.68 % 69.14 % 69.90 %

30 31.41 % 68.59 % 71.17 % 68.44 % 69.79 %

10 32.27 % 67.73 % 70.02 % 67.60 % 68.80 %

SVM 50 20.65 % 79.35 % 83.20 % 79.19 % 81.17 %

30 20.57 % 79.43 % 83.53 % 79.25 % 81.36 %

10 24.27 % 75.73 % 87.81 % 75.08 % 81.20 %

AdaBoost 50 14.53 % 85.47 % 86.49 % 85.41 % 85.95 %

30 14.32 % 85.68 % 86.00 % 85.67 % 85.83 %

10 15.23 % 84.77 % 86.00 % 84.70 % 85.34 %

GentleBoost 50 14.49 % 85.51 % 85.50 % 85.51 % 85.50 %

30 14.92 % 85.08 % 85.83 % 85.03 % 85.43 %

10 14.50 % 85.50 % 86.16 % 85.46 % 85.81 %

Random Forest 50 14.66 % 85.34 % 86.82 % 85.25 % 86.03 %

30 15.07 % 84.93 % 85.67 % 84.88 % 85.27 %

10 14.89 % 85.11 % 85.67 % 85.08 % 85.37 %

CART 50 19.62 % 80.38 % 76.77 % 80.59 % 78.66 %

30 19.72 % 80.28 % 76.77 % 80.48 % 78.60 %

10 19.37 % 80.63 % 74.79 % 80.96 % 77.82 %

RF-RUS 10 6.98 % 93.02 % 47.45 % 95.63 % 67.36 %

Table 12 Comparisons of
Sample Path SMSE LRN* MELD PTR # Status**

LR[u] 0.821 100.1 11032.3 0.207

LR[w] 0.698 102.5 11052.9 0.217

SVM 0.640 90.1 11053.3 0.235

GentleBoost 0.643 86.8 11051.0 0.246

AdaBoost 0.668 106.1 11051.6 0.298

Random Forest 0.661 114.1 11051.0 0.217

CART 0.673 91.4 11051.1 0.234

RF-RUS 0.600 91.7 10674.7 0.205

*LRN: Local, Regional or
National
**Status: 1A, 1B candidate or
MELD category candidate
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Table 13 Top 50 features for 1A candidates by information gain

Rank Features Description

1 ‘ptr sequence num’ PTR Sequence Number (a ranking number for the PTR)
2 ‘ptr waiting tm cat’ Waiting Time Category - waiting time points awarded
3 ‘can acpt abo incomp N’ Accept an incompatible blood type?
4 ‘travel time’ Travel time
5 ‘age ratio’ Donor/Candidate age ratio
6 ‘wgt ratio’ Donor/Candidate weight ratio
7 ‘ABO match’ Donor/Candidate Blood type Match or not
8 ‘don wgt kg’ Donor/s Weight in kilograms
9 ‘don expand don ki 0’ Meet kidney expanded donor criteria for cadaveric
10 ‘ptr tot score’ Total score for the candidate on the match
11 ‘don expand don flg optn 0’ Does donor meet criteria to be an Expanded Donor? (Y)
12 ‘can min wgt’ Minimum acceptable Donor Weight
13 ‘don hist hyperten 1’ History of Hypertension 1: NO
14 ‘can motor develop 4’ Motor Development (Ped Only) 4: No Motor delay/impairment
15 ‘don li biopsy N’ Liver Biopsy
16 ‘diff MELD’ Difference btw Lab and match MELDS
17 ‘lab MELD’ Lab MELD
18 ‘canhx wgt kg m’ Candidate/s Weight in kilograms : missing
19 ‘canhx albumin’ Albumin (used for MELD)
20 ‘canhx hgt cm m’ Candidate/s Height (stored in cm) : missing
21 ‘don li biopsy macro fat m’ % Macro vesicular fat: Missing
22 ‘don abo O’ Donor/s Blood Type O
23 ‘can work income N’ Working for income//If No, Not Working Due To: Missing

24 ‘can work no stat 996’ Working for income. If No, Not Working Due To- Hospitalized
25 ‘can acpt a2 don A’ Accept A2 donor?
26 ‘can abo O’ Patient/s Blood Type O
27 ‘don prerecov steroids Y’ Pre-Recov Meds given Donor: Steroids
28 ‘can malig ty hepcarcinoma 0’ Previous Malignancy - Hepatocellular Carcinoma
29 ‘can cognitive develop 4’ Cognitive Development (Ped Only) 4: No Cognitive delay/impairment
30 ‘don anti hcv P’ Anti-HCV P: positive
31 ‘don hist cancer 2’ History of Cancer 2: SKIN - SQUAMOUS, BASAL CELL
32 ‘don hcv stat 1’ HCV Antibody Status 1: Positive
33 ‘can work no stat 2’ Working for income. Not Working Due To- Demands of Treatment
34 ‘can acpt a2 don N’ Accept A2 donor?
35 ‘don hbv surf antibody N’ HBsAb (Hepatitis B Surface Antibody) N: Negative
36 ‘don hist hyperten 2’ History of Hypertension 2: YES, 0-5 YEARS
37 ‘can acpt hcv pos N’ Accept an HCV Antibody Positive Donor?
38 ‘don hist diab 1’ History of Diabetes 1: NO
39 ‘canhx growth fail 0’ Patient is experiencing growth failure
40 ‘don ebna P’ EBNA (Epstein-Barr nuclear antigen) P: Positive
41 ‘can init srtr lab meld ty M’ First SRTR MELD/PELD type given : M
42 ‘can cognitive develop 1’ Cognitive Development (Ped Only) 1: Definite Cognitive delay/impairment
43 ‘don death circum 6’ Cirumstances of Death 6: DEATH FROM NATURAL CAUSES
44 ‘can dgn 4215’ Primary Diagnosis 4215: LI:ALCOHOLIC CIRRHOSIS
45 ‘can dgn 4216’ Primary Diagnosis 4216: LI:ALCOHOLIC CIRRHOSIS WITH HEPATITIS C
46 ‘can diab ty 998’ Diabetes 998: Diabetes Status Unknown
47 ‘don tx ctr ty TX1’ Transplant Center Type: TX1
48 ‘can race 128’ Patient/s race 128: Native Hawaiian or Other Pacific Islander
49 ‘can dgn 4404’ Primary Diagnosis 4404: LI:PLM: HEPATOBLASTOMA (HBL)
50 ‘can malig ty 2’ Previous Malignancy Type(s) 2: Skin Non-Melanoma
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Table 14 Correlation Coefficients among top 10 features for 1A Candidates by Information Gain

Features F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F1 1 0.713 −0.076 0.206 −0.024 −0.036 0.011 −0.040 −0.115 −0.0953

F2 0.713 1 −0.136 0.350 −0.019 −0.021 −0.074 0.039 −0.106 −0.1595

F3 −0.076 −0.136 1 −0.051 −0.085 −0.093 0.143 −0.012 0.039 0.3296

F4 0.206 0.350 −0.051 1 0.191 0.114 −0.021 −0.414 0.141 −0.0944

F5 −0.024 −0.019 −0.085 0.191 1 0.698 −0.045 −0.018 0.029 −0.1326

F6 −0.036 −0.021 −0.093 0.114 0.698 1 −0.001 0.127 0.073 −0.0710

F7 0.011 −0.074 0.143 −0.021 −0.045 −0.001 1 −0.047 0.019 0.6145

F8 −0.040 0.039 −0.012 −0.414 −0.018 0.127 −0.047 1 −0.168 −0.0150

F9 −0.115 −0.106 0.039 0.141 0.029 0.073 0.019 −0.168 1 −0.0033

F10 −0.095 −0.160 0.330 −0.094 −0.133 −0.071 0.615 −0.015 −0.003 1

F1 = ‘ptr sequence num’ F6 = ‘wgt ratio’

F2 = ‘ptr waiting tm cat’ F7 = ‘ABO match’

F3 = ‘can acpt abo incomp N’ F8 = ‘don wgt kg’

F4 = ‘travel time’ F9 = ‘don expand don ki 0’

F5 = ‘age ratio’ F10 = ‘ptr tot score’

Table 15 Top 50 features for Not-1A candidates by information gain

Rank Features Description

1 ‘wgt ratio’ Donor/CandidateWeight Ratio
2 ‘hgt ratio’ Donor/Candidate Height Ratio
3 ‘ptr stat dt’ Urgency Status Date - relative date/time
4 ‘ptr waiting tm cat’ Waiting Time Category - waiting time points awarded
5 ‘ptr stat cd’ Match MELD
6 ‘ptr tot score’ Total score for the candidate on the match
7 ‘age ratio’ Donor/Candidate Age ratio
8 ‘ptr sequence num’ PTR Sequence Number (a ranking number for the PTR)
9 ‘canhx wgt kg’ Candidate/s Weight in kilograms
10 ‘can min wgt’ Minimum acceptable Donor Weight
11 ‘diff MELD’ Difference btw Lab and match MELDS
12 ‘can age at listing’ Calculated Candidate Age in Months at Listing
13 ‘canhx hgt cm’ Candidate/s Height (stored in cm)
14 ‘can bmi’ Patient/s Bady mass index
15 ‘median wait’ Transplant center’s median waiting time
16 ‘notx200-100’ Difference in No. Tx btw 200 and 100 miles radius
17 ‘notx300-200’ Difference in No. Tx btw 300 and 200 miles radius
18 ‘can init srtr lab meld ty M’ First SRTR MELD/PELD type given
19 ‘can init optn lab meld ty M’ First OPTN MELD/PELD type given
20 ‘canhx inr’ International Normalized Ratio(used for MELD)
21 ‘can activate dt’ Activation Date - date/time waiting time clock started
22 ‘can max wgt’ Maximum acceptable Donor Weight
23 ‘canhx serum creat’ Serum creatinine (used for MELD)
24 ‘can init act stat dt’ Date of First Active Status
25 ‘can listing dt’ Listing Date - date/time candidate was added to the waiting list
26 ‘ptr activate dt’ PTR Waiting Time Date - relative date/time
27 ‘can motor develop 4’ Motor Development (Ped Only) 4: No Motor delay/impairment
28 ‘canhx bili’ Bilirubin (used for MELD)
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Table 15 (continued)

Rank Features Description

29 ‘can init optn lab meld’ First OPTN MELD/PELD given
30 ‘can init srtr lab meld’ First SRTR MELD/PELD given

31 ‘can work income N’ Working for income:

32 ‘can max age’ Maximum acceptable Donor age

33 ‘canhx serum sodium’ Serum sodium (used for MELD)

34 ‘canhx ascites 1’ Ascites (used for MELD)

35 ‘can cognitive develop 4’ Cognitive Development (Ped Only) 4: No Cognitive delay/impairment

36 ‘can education 996’ Patient/s Educational Status 996: N/A (< 5 YRS OLD)

37 ‘lab MELD’ Lab MELD

38 ‘can dgn 4315’ Primary Diagnosis 4315: LI:METDIS: OTHER SPECIFY

39 ‘can functn stat 4080’ Patient/s Functional Status 4080: 80 % - Active

40 ‘can dgn 4500’ Primary Diagnosis 4500: LI:TPN/HYPERALIMENTATION IND LIVER DISEASE

41 ‘canhx growth fail 0’ Patient is experiencing growth failure

42 ‘canhx enceph 2’ Encephalopathy (used for MELD)

43 ‘can prev tx 0’ Previous Transplants

44 ‘can functn stat 996’ Patient/s Educational Status 996: N/A (< 5 YRS OLD)

45 ‘canhx ascites 3’ Ascites (used for MELD)

46 ‘can max mile’ Maximum miles the implant team will travel

47 ‘travel time’ Travel Time from donor hospital to candidate’s transplant center

48 ‘status1b 6012’ Is candidate’s status 1B?

49 ‘can min age’ Minimum acceptable Donor Age

50 ‘can new prev pi tx N’ Previous Pancreas Islet Transplantation: No

Table 16 Correlation Coefficients among top 10 features for Not-1A Candidates by Information Gain (continued)

Features F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

F1 1 0.519 −0.035 −0.094 −0.190 0.157 0.708 −0.050 −0.519 −0.345

F2 0.519 1 −0.003 −0.058 −0.129 0.075 0.399 −0.029 −0.318 −0.223

F3 −0.035 −0.003 1 0.081 −0.113 −0.336 −0.059 0.159 0.052 −0.044

F4 −0.094 −0.058 0.081 1 0.010 −0.128 −0.040 0.554 0.109 0.000

F5 −0.190 −0.129 −0.113 0.010 1 0.504 −0.290 −0.092 0.133 0.122

F6 0.157 0.075 −0.336 −0.128 0.504 1 0.092 −0.263 −0.178 −0.070

F7 0.708 0.399 −0.059 −0.040 −0.290 0.092 1 −0.036 −0.341 −0.258

F8 −0.050 −0.029 0.159 0.554 −0.092 −0.263 −0.036 1 0.079 −0.020

F9 −0.519 −0.318 0.052 0.109 0.133 −0.178 −0.341 0.079 1 0.418

F10 −0.345 −0.223 −0.044 0.000 0.122 −0.070 −0.258 −0.020 0.418 1

F1 = ‘wgt ratio’ F6 = ‘ptr tot score’

F2 = ‘hgt ratio’ F7 = ‘age ratio’

F3 = ‘ptr stat dt’ F8 = ‘ptr sequence num’

F4 = ‘ptr waiting tm cat’ F9 = ‘canhx wgt kg’

F5 = ‘ptr stat cd’ F10 = ‘can min wgt’
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