

A Systematic Review for Variables to Be Collected in a Transplant Database for Improving Risk Prediction

Jehad Almasri, MD,^{1,2} Mouaffaa Tello, MD,^{1,2} Raed Benkhadra, MD,^{1,2} Allison S. Morrow, BA,^{1,2} Bashar Hasan, MD,^{1,2} Wigdan Farah, MBBS,^{1,2} Neri Alvarez Villalobos, MD,^{1,2} Khaled Mohammed, MB, BCH,^{1,2} Jay-Sheree P. Allen, MD,^{1,2} Larry J. Prokop, MLS,³ Zhen Wang, PhD,^{1,2} Bertram L. Kasiske, MD,^{4,5} Ajay K. Israni, MD,^{4–6} and Mohammad Hassan Murad, MD, MPH^{1,2}

Background. This systematic review was commissioned to identify new variables associated with transplant outcomes that are not currently collected by the Organ Procurement and Transplantation Network (OPTN). **Methods.** We identified 81 unique studies including 1 193 410 patients with median follow-up of 36 months posttransplant, reporting 108 unique risk factors. **Results.** Most risk factors (104) were recipient related; few (4) were donor related. Most risk factors were judged to be practical and feasible to routinely collect. Relative association measures were small to moderate for most risk factors (ranging between 1.0 and 2.0). The strongest relative association measure for a heart transplant outcome with a risk factor was 8.6 (recipient with the previous Fontan operation), for a kidney transplant 2.8 (sickle cell nephropathy as primary cause of end-stage renal disease), for a liver transplant 14.3 (recipient serum ferritin >500 μ g/L), and for a lung transplant 6.3 (*Burkholderia cepacia* complex infection for 1 y or less). OPTN may consider some of these 108 variables for future collection to enhance transplant research and clinical care. **Conclusions.** Evidence-based approaches can be used to determine variables collected in databases and registries. Several candidate variables have been identified for OPTN.

(Transplantation 2019;103: 2591-2601)

INTRODUCTION

Organ transplant is a major clinical procedure that requires shared decision-making and accurate risk prediction. Therefore, it is critical to know which recipient and donor variables affect transplant outcomes. Databases

Received 17 August 2018. Revision received 16 January 2019.

Accepted 23 January 2019.

² Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, MN.

³ Mayo Clinic Libraries, Mayo Clinic, Rochester, MN.

⁴ Scientific Registry of Transplant Recipients, Minneapolis Medical Research Foundation, Minneapolis, MN.

⁵ Department of Medicine, Hennepin Healthcare, University of Minnesota, Minneapolis, MN.

⁶ Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN.

J.A. involved in protocol design, data collection, statistical analysis, and ritical revisions to the manuscript; M.T. involved in protocol design, data collection, and critical revisions to the manuscript; R.B. involved in protocol design, data collection, and critical revisions to the manuscript; A.S.M, B.H., W.F., N.A.V., K.M., and J.S.P.A. involved in data collection and critical revisions to the manuscript; L.J.P. involved in design search strategy, execute search, and critical revisions to the manuscript; B.L.K. and A.K.I. involved in protocol design, and critical revisions to the manuscript; B.L.K. and A.K.I. involved in protocol design, interpretation of analysis, and critical revisions to the manuscript; M.H.M. involved in protocol design, interpretation of analysis, and critical revisions to the manuscript.

and registries that track transplants collect variables with the goal of improving process measures and ultimately leading to better patient outcomes and higher quality of care. Such variables have been collected based on prior research and expert opinion. In the United States, the Organ Procurement and Transplantation Network (OPTN) database has grown in both size and importance. The legal framework for the database was established by the National Organ Transplantation Act.¹ Transplantation

Supplemental digital content (SDC) is available for this article. Direct URL citations appear in the printed text, and links to the digital files are provided in the HTML text of this article on the journal's Web site (www.transplantjournal.com).

Correspondence: Mohammad Hassan Murad, MD, MPH, Division of Preventive, Occupational and Aerospace Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN 55905. (murad.mohammad@mayo.edu).

Copyright © 2019 Wolters Kluwer Health, Inc. All rights reserved.

ISSN: 0041-1337/19/10312-2591

DOI: 10.1097/TP.000000000002652

¹ Evidence-Based Practice Research Program, Mayo Clinic, MN.

The authors have no conflicts of interest to disclose.

This work was conducted under the auspices of the Minneapolis Medical Research Foundation, contractor for the Scientific Registry of Transplant Recipients, as a deliverable under contract number HHSH250201500009C (US Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, Division of Transplantation). As a US Government-sponsored work, there are no restrictions on its use. The views expressed herein are those of the authors and not necessarily those of the US Government. A.K.I. was partially supported by R01 HS 24527.

under National Organ Transplantation Act is administered by the US Department of Health and Human Services, Health Resources and Services Administration (HRSA), Division of Transplantation. HRSA is supported by 2 contracts, one for OPTN, which collects and administers the database, and another for the Scientific Registry of Transplant Recipients (SRTR),² which provides analysis of OPTN data. HRSA contracts with not-for-profit foundations to administer and maintain the database.

In 1999, the Final Rule for governing OPTN and its database were published in the US Registry,³ stipulating that "The OPTN and the Scientific Registry, as appropriate, shall: (1) Maintain and operate an automated system for managing information about transplant candidates, transplant recipients, and organ donors, including a computerized list of individuals waiting for transplants, (2) Maintain records of all transplant candidates, all organ donors and all transplant recipients, (3) Operate, maintain, receive, publish, and transmit such records." The SRTR Technical Advisory Committee recommended a process to review, add, or remove data elements, based on pilot studies that demonstrated a contribution to the model, and that the data management process should proceed in a continuous or cyclical timeframe. However, controversy has continued as to whether OPTN is collecting adequate data needed to adjust models that calculate transplant program expected outcomes. In 2012, a consensus conference was held to discuss the use of OPTN data for quality assurance by OPTN, the Centers for Medicare & Medicaid Services (CMS), and private insurance providers. Recommendations included collecting more reliable organspecific data on coronary heart disease (eg, revascularizations), peripheral vascular disease (eg, revascularizations and amputations), diabetes mellitus, zip code socioeconomic status, donor risk, and ventricular assist devices.⁴

To better inform the question of whether additional OPTN data elements might improve risk prediction models for posttransplant outcomes,⁵ SRTR collaborated with the Mayo Clinic Agency for Healthcare Research and Quality Evidence Practice Center⁶ to conduct a systematic review. The systematic review targeted published multivariate analyses of pretransplant risk factors, including donor and recipient factors, and patient-level and system-level factors predicting outcomes of importance to patients (eg, death and allograft survival). The transplanted organs evaluated were kidney, pancreas, liver, heart, and lung. The review also evaluated multiorgan transplants such as simultaneous heart-lung, kidney-pancreas, and kidney-liver transplants. The systematic review was designed to identify risk factors that are not currently being collected.

MATERIALS AND METHODS

The reporting of this systematic review adheres to the Preferred Reporting for Systematic Reviews and Meta-Analysis statement.⁷ The study protocol was developed and executed by methodologists with expertise in evidence synthesis and SRTR staff who provided clinical and contextual expertise.

Data Sources and Search Strategies

A comprehensive search of several databases from the inception of each to November 16, 2016, was conducted. The databases included the Ovid Medline In-Process &

Other Non-Indexed Citations, Ovid MEDLINE, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, and Scopus. Grey literature and conference abstracts were also searched. The search strategy was designed and conducted by a medical reference librarian with input from the investigators. Controlled vocabulary supplemented with keywords was used to search for studies of risk factors for outcomes of kidney, pancreas, liver, heart, lung, and combined transplants. Details of the strategy are described in the Supporting Information.

Main Outcome Measure

Outcomes of interest were death on the waiting list, allcause mortality, graft failure, death-censored graft loss, and waitlist mortality (death/delisting due to being too sick to undergo transplant). Risk factors for each organ transplant failure outcome were reported with odds ratio, hazard ratio (HR), and relative risk, which were extracted and were all referred to as relative effect. Only risk factors that were significantly associated with the outcome were extracted. Due to the vast heterogeneity of the risk factors and outcomes and the scarcity of studies representing each individual risk factor, a meta-analysis was not feasible.

Study Selection

We included studies that evaluated risk factors of transplant (donor and recipient factors, patient-level and system-level factors, only preoperative factors, organs: kidney, pancreas, pancreas + kidney, liver, liver + kidney, heart, lung, and heart + lung). Risk factors were obtained from studies in which patients were eligible for organ transplant, were waitlisted for deceased donor transplant, or underwent deceased donor/living donor transplant.

We did not restrict time or study location. We included randomized controlled trials and observational studies. Systematic reviews and meta-analyses were initially included for cross-referencing. We excluded editorials, letters, narrative and systematic reviews, and errata, as well as non-English publications. We included studies based on the following sample size criteria: kidney alone ≥ 1000 patients, pancreas ≥ 100 , pancreas + kidney ≥ 100 , liver alone ≥ 100 , liver + kidney ≥ 50 , heart ≥ 100 , lung ≥ 100 , and heart + lung any sample size. These organ-specific sample-size thresholds were chosen in order to exclude small studies that would likely be underpowered to detect any effects of risk factors on the outcome(s) under study while still including as many studies as possible in the analysis.

We excluded studies focused on human leukocyte antigen compatibility as a risk factor, and studies focused on risk factors obtained solely from the OPTN database without additional data sources.

Seven independent reviewers screened the abstracts and full text of eligible references in duplicates. Discrepancies between pairs of reviewers were handled through discussions and consensus. If consensus was not reached, a third reviewer was asked to resolve the difference.

Data Extraction and Risk of Bias Assessment

A pilot-tested standardized data extraction form was created. The following information was extracted: author, sample size, organ (to be) transplanted, whether patients were on the transplant waiting list or had undergone transplant, outcomes and associated risk factors, and follow-up duration. Risk of bias was assessed for each included study using the following items, derived from the Newcastle-Ottawa scale⁸: single center versus multicenter, cohort selection, outcome ascertainment, adjusting the analysis, and loss to follow-up. Based on these factors, the risk of bias for each study was low, moderate, or high. Data extraction and risk of bias were performed by pairs of independent reviewers.

RESULTS

Study Characteristics

The search strategy identified 4909 relevant citations. A total of 81 unique studies with an average sample size of 14733 patients met the inclusion criteria (Figure 1). Thirty-four studies were conducted in the United States. Median follow-up was 36 months posttransplant (range 1–130). Table S1 (SDC, http://links.lww.com/TP/B695) lists the characteristics of included studies.

Risk of Bias

Most included studies had a retrospective cohort design. Only a few (6 [7%]) were prospective. Risk of bias assessment for the included studies is listed in Table S3 (SDC, http://links.lww.com/TP/B695). Overall, the risk of bias was low to moderate for most factors due to adequate follow-up, outcome ascertainment, and multivariable adjustment.

Variables to Be Collected in Transplant Databases

One hundred eight unique risk factors were found which are not currently included in the OPTN database. Most (104) were recipient related and very few (4) were donor related. Risk factors overlapped somewhat by organ. The highest number of new risk factors related to liver transplant (14 recipient related for patients on the

FIGURE 1. Flowchart depicting the process of study selection. OPTN, Organ Procurement and Transplantation Network; UNOS, United Network for Organ Sharing.

waiting list, 30 recipient related for patients who underwent the transplant, and 1 donor related). The next highest number related to kidney transplant (1 recipient related for patients on the waiting list, 29 recipient related for patients who underwent transplant, and 1 donor related). Regarding heart transplant, 5 risk factors were recipient related for patients on the waiting list, 10 were recipient related for patients who underwent transplant, and 2 were donor related. Fewer data were available for lung transplant (4 recipient-related risk factors for patients on the waiting list, 9 for patients who underwent transplant) and pancreas transplant (1 donor related).

Table 1 lists the risk factors for each organ transplant for patients on the waiting list, and Table 2 for patients who underwent transplant. Table 3 lists the donor-related risk factors for each organ. More details about the studies assessing risk factors are outlined in Table S2 (SDC, http:// links.lww.com/TP/B695). These tables provide information on the size of the relative effect that associates the risk factor with the outcome, the type of outcome, lengths of follow-up, and risk of bias. Some variables are impractical or difficult to routinely collect (eg, heart failure survival score and Framingham stroke risk profile). The majority of risk factors were adjusted in multivariable regression models implemented in each study (with some variabilities in the adjusted factors among the individual studies) as indicated in Tables S2.1 and S2.2 (SDC, http://links.lww. com/TP/B695).

Magnitude of Association

Most of the relative association measures (odds ratios, relative risks, or HRs) ranged between 1.0 and 2.0 (mild-to-moderate association), with just a few suggesting a strong association.

As for the recipient-related risk factors, the strongest relative association for a heart transplant outcome with a risk factor was 8.6 (association between all-cause mortality and a previous Fontan operation). Five risk factors for heart transplant outcomes had a low likelihood of bias (association between death on the waiting list and the recipient not using β -blockers, association between death on the waiting list and lower recipient heart failure survival score, association between death on the waiting list and recipient nonsustained ventricular tachycardia, association between all-cause mortality and recipient myocarditis, and association between all-cause mortality and lower recipient left ventricular end-diastolic dimension z score). The strongest relative association with a low likelihood of bias for a heart transplant outcome with a risk factor was 2.7 (association between all-cause mortality and recipient myocarditis).

The strongest relative association for a kidney transplant outcome with a risk factor was 2.8 (association between all-cause mortality and sickle cell nephropathy as the primary cause of end-stage renal disease). This risk factor had a moderate likelihood of bias. The strongest relative association with a low likelihood of bias for a kidney transplant outcome with a risk factor was 2.2 (association between all-cause mortality and recipient smoking).

The strongest relative association for a liver transplant outcome with a risk factor was 14.3 (association between waitlist mortality and serum ferritin $>500 \mu g/L$). This risk factor also had a low likelihood of bias.

4
the
ы
registered
patients
for
factors
isk
elated r
lecipient-r

Recipient-related risk factors for patients registered on th	e transplant waitin	g list				
Risk factor	Included studies	Total number of patients	Follow-up (mo)	Outcome	Relative effect	Likelihood of bias
Heart						
Patient not on β -blockers	Sandner et al ⁹	854	4.7	Death on the waiting list	1.82	Low
Heart failure Survival Score ^a	Zahn et al ¹⁰	318	12	Death on the waiting list	0.64	Low
Nonhypoplastic left heart syndrome	Guleserian et al ¹¹	694	60	Death on the waiting list	1.79	Moderate
Nonsustained ventricular tachycardia	Sandner et al ^g	854	4.7	Death on the waiting list	1.76	Low
Prostaglandin-dependent hypoplastic left-sided heart syndrome	Morrow et al ¹²	118	9	Death on the waiting list	1.48	High
Kidney	ç					
Central venous catheter placement	Hernández et al ¹³	3851	22	Death on the waiting list	1.70	Moderate
Liver						
Anaerobic threshold during cardiopulmonary exercise testing ^b	Ow et al ¹⁴	164	S	Death on the waiting list	0.73	Moderate
Peak V ₆₂ during cardiopulmonary exercise testing ^b	Ow et al ¹⁴	164	c	Death on the waiting list	0.75	Moderate
Median income < \$60244	Schwartz et al ¹⁵	147	32.5	Death on the waiting list	1.35	High
Severely malnourished by subjective global assessment	Ferreira et al ¹⁶	159	8.85	Death on the waiting list	2.60	Low
Fried frailty score (per point increase) ^a	Lai et al ¹⁷	294	12	Waitlist mortality c	1.45	Low
Instrumental Activities of Daily Living scale (per point decrease) ^a	Lai et al ¹⁷	294	12	Waitlist mortality	1.17	Low
Results of short physical performance battery (per point decrease)	Lai et al ¹⁷	294	11.33	Waitlist mortality	1.19	Low
Recurrent spontaneous peritoneal bacterial infection ^d	Silberhumer et al ¹⁸	505	35	Death on the waiting list	1.59	Moderate
Lack of previous ursodeoxycholic acid treatment in patients with PSC	Brandsaeter et al ¹⁹	255	NR	Death on the waiting list	5.00	Low
Brain failure	Reddy et al ²⁰	136	9	Waitlist mortality	3.40	High
Circulatory failure	Reddy et al ²⁰	136	9	Waitlist mortality	6.11	High
Respiratory failure	Reddy et al ²⁰	136	9	Waitlist mortality	5.26	High
Infections other than urinary tract infection	Reddy et al ²⁰	136	9	Waitlist mortality	3.33	High
Serum ferritin > 500 µg/L	Walker et al ²¹	322	12	Waitlist mortality	14.3	Low
Serum ferritin > 400 µg/L					3.49	
Lung			<u>[</u>			-
Nonaccredited cystic fibrosis center	Belkin et alt	343	NK	Death on the waiting list	2.00	High
Cystic fibrosis patients without $Staphylococcus aureus$ pneumonia e	Liou et al ²³	248	NR	Death on the waiting list	1.46	High
Mixed venous oxygen saturation during exercise (SvO)	Selimovic et al ²⁴	177	NR	Waitlist mortality	0.95	Low
Pulmonary vascular resistance (wood units)	Selimovic et al ²⁴	177	NR	Waitlist mortality	1.23	Low
⁴ Not practical to collect. ^b mL/min/Kg, per unit. ^b Wattist mortality, deatt/delisting for being too sick for transplant. ^o The need for hospitalization because of increased infection parameters combined with leucocy. ^o The need for hospitalization because of increased infection parameters combined with leucocy. ^o The need for hospitalization because of increased infection parameters combined with leucocy. ^o The need for hospitalization because of hord parameters and more harmful <i>Pseudom</i> . NR, not reported: PSC, primary sclerosing cholangitis.	yte positive ascites. oras aeruginosa.					

Copyright © 2019 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

TABLE 2.

Recipient-related risk factors for patients who underwent transplant

Risk factor	Included studies	Total number	Follow-up	Outcome	Relative	Likelihood of hias
	moladou otadioo		(110)	outoonic	011001	
Hean	Pietra et al ²⁵	200	~18	All-cause mortality	1 10	Low
Mean right atrial pressure at pretransplant cath (13 vs 5)	Tallaj et al ²⁶	7015	71	All-cause mortality	1.2	Moderate
History of poor compliance ^b	Owen et al ²⁷	108	32.3	All-cause mortality	3.4	Moderate
Preoperative cachexia ^b	Grady et al ²⁸	4515	48	All-cause mortality	NR	Moderate
Intubation before transplant	Zuckermann et al ²⁹	702	61.2	All-cause mortality	NR	Moderate
Myocarditis at diagnosis	Pietra et al ²⁵	209	<48	All-cause mortality	2.71	Low
lschemic heart disease ^b	Lindelöw et al ³⁰	113	67.2	Graft failure ^c	5.8	Moderate
Pretransplant Toxoplasma gondii seropositivity	Arora et al ³¹	246	66	All-cause mortality	1.93	Moderate
Previous classical Glenn operation	Lamour et al ³²	488	27.6	All-cause mortality	3.1	High
Previous Fontan operation	Lamour et al ³²	488	27.6	All-cause mortality	8.6	High
Kidney				,		0
Comorbidity ^b	Anderson et al ³³	171 180	NR	All-cause mortality	2.02	Moderate
	Laskin et al ³⁴		100.8	,	1.28	Moderate
	Barrantes et al ³⁵		48.4		1.18	Moderate
	Goldfarb-Rumy- antzev et al ³⁶		NR		1.1	Moderate
	Gueye et al ³⁷		NR		1.18	Moderate
Comorbidity ^b	Laskin et al ³⁴	157214	100.8	Graft failure	1.25	Moderate
	Goldfarb-Rumy- antzev et al ³⁶		NR		1.06	Moderate
	Gueye et al ³⁷		84		1.09	Moderate
Charlson comorbidity score ^{bd}	Barrantes et al ³⁵	1064	48.4	Death-censored graft loss	1.18	Moderate
Angina pectoris ^b	Aalten et al ³⁸	130914	96	All-cause mortality	2.03	Moderate
	Gill and Pereira ³⁹		≥12		1.38	Moderate
	Petersen et al40		NR		1.33	Moderate
History of cardiovascular disease ^b	Patzer et al41	135636	36	All-cause mortality	1.47	High
	Petersen et al40		NR	-	1.41	Moderate
	Laging et al ⁴²		48		2.5	Moderate
Congestive heart failure	Browne et al ⁴³	2776	24	Graft failure	1.48	High
Myocardial infarction	Farrugia et al ⁴⁴	124284	52.8	All-cause mortality	1.52	Low
	Petersen et al ⁴⁰		NR		1.31	Moderate
Cardiac failure	Petersen et al40	105181	NR	All-cause mortality	1.36	Moderate
Claudication	Aalten et al ³⁸	2187	3	All-cause mortality	1.55	Moderate
Coronary artery disease	Petersen et al40	105181	NR	All-cause mortality	1.35	Moderate
Dysrhythmia	Petersen et al ⁴⁰	105181	NR	All-cause mortality Death-censored graft loss	1.45 1.26	Moderate
History of stroke	Ferro et al ⁴⁵	19103	52.8	All-cause mortality	1.8	Low
Ischemic heart disease	Petersen et al40	105181	NR	All-cause mortality	1.28	Moderate
Cardiac failure	Petersen et al ⁴⁰	105181	NR	Death-censored graft loss	1.14	Moderate
Pretransplant cardiovascular risk score (per 1 score increase) (Framingham risk score)	An et al ⁴⁶	2902	76.8	Graft failure	1.05	Moderate
Cardiovascular disease	Petersen et al ⁴⁰	105181	NR	Death-censored graft loss	1.12	Moderate
History of cardiovascular disease (third tertile in CV risk score)	An et al ⁴⁶	2902	76.8	Graft failure	1.65	Moderate
Residence in deprived areas	Ferro et al ⁴⁵	19103	52.8	All-cause mortality	1.48	Low
Socioeconomic status estimated by median household income quartile (high-mid quartile vs lower quartile)	Foster et al ⁴⁷	90689	12	Death-censored graft loss	0.91	Moderate

Continued next page

Copyright © 2019 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

TABLE 2.	(Continued)
	(Continued)

Risk factor	Included studies	Total number of patients	Follow-up (mo)	Outcome	Relative effect	Likelihood of bias
Residence in mild deprived area (4) vs	Ferro et al ⁴⁵	19103	52.8	All-cause mortality	1.21	Low
Residence in moderate deprived area (3) vs residence in least deprived area (5)	Farrugia et al ⁴⁴	19103	52.8	All-cause mortality	1.43	Low
Residence in most deprived area (2) vs residence in least deprived area (5)	Ferro et al ⁴⁵	19103	52.8	All-cause mortality	1.25	Low
Chronic opioid usage	Barrantes et al ³⁵	1064	48.4	All-cause mortality	1 65	Moderate
Smoking ^e	An et al ⁴⁶	2902	76.8	Graft failure	1.58	Moderate
Smoking	Arend et al ⁴⁸	916	240	All-cause mortality	2.2	Low
Sickle cell nephropathy vs all other primary	Oio et al ⁴⁹	22 647	36	All-cause mortality	2.82	Moderate
causes of end-stage renal disease	-)			Death-censored graft loss	1.6	
>5 lifetime blood transfusions ^b	Benfield et al ⁵⁰	4898	60	Graft failure	1.6	Hiah
Ratio of the weight of the kidney to the weight of the recipient $<2.3 \text{ g/kg}^b$	Giral et al ⁵¹	1060	74.4	Graft failure ^f	1.51	Moderate
Proteinuria (severe vs mild)	Pavlakis et al ⁵²	126	36	Graft failure	2.54	High
Liver						0
Microvascular invasion of HCC	Wang et al ⁵³	1026	33	All-cause mortality	3.1	High
	Marques et al54		34		2.39	High
	Moon et al ⁵⁵		60		4.84	High
	An et al ⁵⁶		28.3		2.69	Moderate
	Silva et al ⁵⁷		12		3.02	Moderate
Macrovascular invasion of HCC	lwatsuki et al ⁵⁸	344	120	All-cause mortality	3.5	Moderate
HCC differentiation grade	Wang et al ⁵³	238	33	All-cause mortality	1.8	High
Sarcopenia ^b	Masuda et al ⁵⁹	328	12	All-cause mortality	2.06	High
	Kaido et al ⁶⁰		12		4.85	High
Fulfill Hangzhou criteria (deceased donor liver transplantation group)	Chen et al ⁶¹	94	41.5	All-cause mortality	3.29	Moderate
Fulfill Hangzhou criteria (living donor liver transplantation group)	Chen et al ⁶¹	47	41.5	All-cause mortality	9.16	Moderate
Serum albumin	Zhang et al ⁶² Nuño et al ⁶³	241	43.6 1	All-cause mortality	6.33 NR	Moderate Moderate
Graft/recipient weight ratio ^b	Yi et al ⁶⁴ Elgend et al ⁶⁵	766	32.6 60	All-cause mortality	200 NR	Moderate
Left ventricular hypertrophy	Darstein et al ⁶⁶ Batra et al ⁶⁷	492	50.4 20	All-cause mortality	1.42 5.92	Moderate
Red cell units transfusion ^b	Parikh et al ⁶⁸	659	1	All-cause mortality	1.04	Moderate
	Boyd et al ⁶⁹		36		1.03	Low
Red cell transfusion	Parikh et al ⁶⁸	450	1	Graft failure	1.04	Moderate
$CRP \ge 1 \text{ mg/dL}$	An et al ⁵⁶	85	28.3	All-cause mortality	2.68	Moderate
Encephalopathy grade 4 vs grade 0	Lewsey et al ⁷⁰	4829	3	All-cause mortality	2.51	High
Estimated glomerular filtration rate	Li et al ⁷¹	218	3	All-cause mortality	NR	Moderate
Hypertriglyceridemia ^g	Beckebaum et al ⁷²	104	64.1	All-cause mortality	1.01	Moderate
Hypertriglyceridemia ^g	Beckebaum et al ⁷²	104	64.1	Graft failure	1.01	Moderate
Ishak fibrosis score > 3	Belli et al ⁷³	502	60	All-cause mortality	4.91	Low
Lifestyle activity score 5 vs score 1 ^h	Lewsey et al ⁷⁰	4829	3	All-cause mortality	2.23	High
Beta natriuretic peptide, per 50 pg/mL increase ^b	Toussaint et al ⁷⁴	207	6	All-cause mortality	1.035	Moderate
Pretransplant intramuscular adipose tissue content ^b	Hamaguchi et al ⁷⁵	200	12	All-cause mortality	3.9	Low
Pretransplant PMI ^{DI}	Hamaguchi et al ⁷⁵	200	12	All-cause mortality	3.64	Low
Preoperative uncontrollable hydrothorax and massive ascites	Endo et al ⁷⁶	237	36	All-cause mortality	2.3	Moderate
Serum choline esterase $< 2.6 \text{ kU/L}^{b}$	Weismüller et al ⁷⁷	462	12	All-cause mortality	1.71	Low
Serum ferritin concentration > 365 µg/L and transferrin saturation < 55%	Weismüller et al ⁷⁸	328	42	All-cause mortality	1.9	Low
Serum potassium (mmol/L) >5.0 vs <3.5	Dawwas et al ⁷⁹	5942	60	All-cause mortality	1.38	Low

Continued next page

TABLE 2. (Continued)

		Total number	Follow-up		Relative	Likelihood
Risk factor	Included studies	of patients	(mo)	Outcome	effect	of bias
Serum potassium (mmol/L) 4.5–5.0 vs <3.5	Dawwas et al ⁷⁹	5942	60	All-cause mortality	1.47	Low
Pretransplant serum Mg (<1.8 mg/dL)	Elgend et al ⁶⁵	673	60	Graft failure	2.36	Moderate
Intubation before transplant	Parikh et al ⁶⁸	450	1	Graft failure	2.41	Moderate
High pretransplant BUN	Elgend et al ⁶⁵	673	60	Graft failure	1.05	Moderate
Pretransplant platelet count	Elgend et al ⁶⁵	673	60	Graft failure	NR	Moderate
Lung						
Atrial fibrillation	Plantier et al ⁸⁰	258	13.2	All-cause mortality	3.51	Low
Carotid atheroma ^b	Plantier et al ⁸⁰	258	13.2	All-cause mortality	1.49	Low
<i>Burkholderia cepacia</i> pneumonia	Stephenson et al ⁸¹	580	60	All-cause mortality	1.92-6.29	Low
Executive function	Smith et al ⁸²	201	129.6	All-cause mortality	1.09	Moderate
Impaired memory	Smith et al ⁸²	201	129.6	All-cause mortality	1.11	Moderate
Framingham stroke risk profile ^b	Smith et al ⁸²	201	129.6	All-cause mortality	1.13	Moderate
Pancreatic sufficiency	Stephenson et al ⁸¹	580	60	All-cause mortality	2.13	Low
Serum prealbumin $\leq 18 \text{g/dL}^b$	González-Castro et al ⁸³	112	NR	All-cause mortality	3.01	Moderate
Cystic fibrosis patients with <i>Staphylococcus</i> <i>aureus</i> pneumonia	Liou et al ²³	248	NR	All-cause mortality	1.51	High

^aThe increased risk is associated with a lower score.

^bNot practical to collect.

^cGraft coronary artery disease.

^dA lower Charlson comorbidity is associated with a higher risk of graft loss.

Relative risk has been calculated based on the raw data that corresponds to current smoking vs never smoked.

⁷Graft failure after 2 years follow-up.

^g Defined as fasting total cholesterol level of 200 mg/dL or the need for antilipemic agents.

^h Clinician reported measure on a 5-point score of the impact of disease on the ability to carry out activities of daily living.

The increased risk of mortality is related to low pretransplant PMI.

BUN, blood urea nitrogen; CV, cardiovascular; CRP, C-reactive protein; HCC, hepatocellular carcinoma; NR, not reported; PMI, psoas muscle mass index.

TABLE 3.

Donor-related risk factors

Risk Factor	Included studies	Total number of patients	Follow-up (mo)	Outcome	Relative effect	Likelihood of bias
Heart						
Coronary atherosclerosis of the donor heart (double- or triple-vessel coronary atherosclerosis vs single or no vessel coronary atherosclerosis)	Grauhan et al ⁸⁴	1168	120	All-cause mortality	11.5	High
Hormonal therapy in donor	Conway et al ⁸⁵	3149	1	All-cause mortality	1.52	Moderate
Kidney						
Donor's acute kidney injury stage 1, 2, or 3 vs no AKI	Boffa et al ⁸⁶	11219	12	Graft failure	1.2	Low
Pancreas						
Donor hyperglycemia (glucose ≥200 vs <200 mg/dL)	Gores et al ⁸⁷	253	12	Graft failure	1.4	Moderate

AKI, acute kidney injury.

The strongest relative association for a lung transplant outcome with a risk factor was 6.3 (association between all-cause mortality and the recipient having *Burkholderia cepacia* complex for 1 y or less). This risk factor also had a low likelihood of bias.

Regarding donor-related risk factors, the strongest relative association for a heart transplant outcome with a risk factor was 11.5 (association between all-cause mortality and coronary atherosclerosis of the donor heart with double- or triple-vessel coronary atherosclerosis). The only relative association for a kidney transplant outcome with a risk factor was 1.2 (association between graft failure and donor acute kidney injury stage 1, 2, or 3 versus no acute kidney injury). This risk factor also had a low likelihood of bias. The only relative association for a pancreas transplant outcome with a risk factor was 1.4 (association between graft failure and donor hyperglycemia [glucose \geq 200 mg/dL versus < 200 mg/dL]).

DISCUSSION

Main Findings

This systematic review demonstrates that additional recipient and donor data elements not collected in the

OPTN database are associated with recipient and allograft outcomes posttransplant and candidate survival on the waiting list. Recipient data elements for kidney transplant include central venous catheter use at time of listing, and comorbid conditions (especially cardiovascular), socioeconomic factors, and smoking status at time of transplant. For liver transplant, recipient data elements include physiological parameters, socioeconomic status, comorbid conditions at time of listing, and functional capacity at time of transplant. For lung transplant, recipient data elements include infections and physiological parameters at time of listing and comorbid conditions, functional status, and infections at time of transplant. For pancreas transplant, recipient data elements include comorbid conditions at time of transplant. For heart transplant, recipient data elements include heart disease-related factors at time of listing, physiological parameters, and heart disease-related factors at time of transplant. Fewer donor-related data elements not collected in the OPTN database were identified. These include donor comorbid conditions and donor allograft characteristics. The present systematic review summarizes the entire body of evidence for these additional variables and presents an opportunity to add these variables to the registry.

Practical Implications

In the past, data elements have been added in an ad hoc fashion through OPTN's organ-specific committees. Based on HRSA guidance, a Data Advisory Committee was established by OPTN/United Network for Organ Sharing (UNOS) with the purview of assessing the quality of data collected by OPTN. If OPTN decides to incorporate any of the identified additional risk factors, the next step would be to assess feasibility of collecting these data elements in an objective fashion. The use of robust definitions is imperative for any new data collection. The Data Advisory Committee, in concert with OPTN/UNOS organ-specific committees, could also assess the unintended consequences of use of any new data variables prior to recommending data collection by OPTN/UNOS. The criticism that OPTN/UNOS will encounter relates to the additional data collection burden on transplant providers.

Because some of these variables occur at the time of listing, the cost of collection may be covered by the transplant program hospital cost report as funded by CMS.⁸⁸ However, the cost of collecting data at the time of transplant has sometimes been deemed an "unfunded mandate." Recently, awareness has been growing in the transplant community that the data collected by OPTN are not adequate, especially when used to assess outcomes for transplant program quality assurance.⁴ These 2 competing concerns will likely need to be balanced. One way to balance them is to remove from the existing OPTN data risk factors that are not reliably collected or are not associated with outcomes.

Another criticism that OPTN/UNOS is likely to encounter is that comorbid conditions are available on form CMS-2728 and in CMS claims. However, these data are not readily available to transplant programs. Also, CMS data are available only after substantial lag time, and CMS claims are not available for patients for whom Medicare is not the primary insurer.

Several comorbid conditions identified in this systematic review occurred at the time of transplant as risk factors for posttransplant kidney allograft outcomes. These were assessed using multivariate modeling and include history of stroke (HR, 1.80; 95% confidence interval [CI], 1.39–2.33),⁴⁵ acute myocardial infarction (HR, 1.52; 95% CI, 1.15–1.84),⁴⁴ and claudication (HR, 1.55; 95% CI, 1.05–2.29).³⁸ Several other studies corroborated this association of cardiovascular and peripheral vascular conditions.^{39,40,42,89} Some studies went a step further and combined comorbid conditions as indices, finding that presence of one or more condition in the comorbidity indices was associated with increased risk of worse posttransplant allograft outcomes.^{33-35,37} Similarly, conditions such as left ventricular hypertrophy,^{66,67} low glomerular filtration rate,⁷¹ hypertriglyceridemia,⁷² hypercholesterolemia⁷²; malnutrition-related factors such as low albumin^{62,63} or intramuscular adipose tissue content⁷⁵; and psoas muscle mass index⁷⁵ or low muscle mass^{60,75} emerged as important risk factors for liver transplant. Conditions such as atrial fibrillation,⁸⁰ carotid atheroma,⁸⁰ stroke risk,⁸² pan-creatic insufficiency,⁸¹ and infections^{23,81} were risk factors for lung transplant. Conditions such as congestive heart failure⁴³ and proteinuria⁵² were important risk factors for pancreas transplant. Conditions such as previous cardiac operations, ³² cerebral vascular accident, $\frac{4}{90}$ and malnour-ishment as evidenced by low albumin^{90,91} or preoperative cachexia²⁸ were risk factors for heart transplant.

Socioeconomic status was another risk factor category at time of transplant, associated with post-kidney transplant outcomes. Socioeconomic status was defined as residence in a most deprived area^{44,45} or as median household income by zip code.⁴⁷ Similarly, the median income at time of listing was a risk factor for liver transplant.¹⁵

Some risk factors were unique to the specific type of organ transplant. Preoperative pulmonary vascular resistance index⁹² and left ventricular end-diastolic dimension²⁵ were identified as physiological risk factors associated with post-heart transplant outcomes. Hepatocellular carcinoma-related risk factors such as microvascular invasion,⁵⁴⁻⁵⁸ C-reactive protein,⁵⁶ Milan criteria,^{58,61,72} intrahepatic metastasis,⁵⁵ and cancer differentiation grade⁵³ were associated with post-liver transplant outcomes, as were intraoperative risk factors such as number of red blood cell transfusions.⁶⁸ Functional capacity defined by executive function⁸² or memory⁸² was associated with post-lung transplant outcomes.

Fewer risk factors were identified at time of listing than at time of transplant, but the types of risk factors were similar in theme. For example, the same comorbid conditions were important risk factors at time of listing and time of transplant. For practitioners, knowing risk factors that affect patient prognosis is important for shared decisionmaking. Such risk factors can be discussed with patients contemplating transplant to shape their expectations and keep them more informed about prognosis. If risk factors were modifiable, this knowledge gives patients and clinicians the opportunity to institute preventive measures.

Limitations and Strengths

The quality of evidence is limited due to deriving estimates from retrospective or single-center studies with heterogeneous data reporting. Some studies provided unadjusted estimates. Some variables, whether already collected by OPTN or identified in this review, can be codependent or collinear or have statistical interactions. These statistical associations should be assessed in future studies conducting multivariable analyses of OPTN data, and they cannot be determined in this systematic review. In addition, once new variables have been collected, future research is needed to study how the new variables and their interactions with existing variables affect risk prediction.

To our knowledge, this report provides the most comprehensive review of risk factors for death and allograft survival for solid organ transplants. These results can serve as a rationale for adjusting data elements currently being collected and may help providers engage patients in shared decision-making at the time of listing and of transplant. We hope that this model (a systematic review to determine which data elements should be included in registries and databases) can be extended to registries of other conditions and clinical fields.

A need remains for unambiguous definitions to accompany future refinement of OPTN/UNOS data collection, along with uniform reporting of risk factors and outcomes. These risk factors can fuel optimal care of solid organ transplant patients through their use in quality improvement tools provided by SRTR to all transplant programs. Adequate collection of risk factors can encourage providers to perform transplants in patients with these risk factors and innovate to reduce the negative impact of these risk factors, because the SRTR models could account for them.

ACKNOWLEDGMENTS

The authors thank SRTR colleague Nan Booth, MSW, MPH, ELS, for manuscript editing.

REFERENCES

- 1. National Organ Transplantation Act of 1984. Pub L No. 98–507, 98 Stat 2339–2348. 1984.
- Scientific Registry of Transplant Recipients. Available at https://www. srtr.org/. 2018. Accessed April 5, 2018.
- Department of Health and Human Services. 42 CFR Part 121; Organ Procurement and Transplantation Network. Final Rule (63 Federal Register 16295, at 16332). 1998.
- Kasiske BL, McBride MA, Cornell DL, et al. Report of a consensus conference on transplant program quality and surveillance. *Am J Transplant*. 2012;12(8):1988–1996.
- Scientific Registry of Transplant Recipients. *Risk adjustment models:* posttransplant outcomes 2018. Available at https://www.srtr.org/ reports-tools/risk-adjustment-models-posttransplant-outcomes/. 2018. Accessed April 11, 2018.
- Mayo Clinic evidence-based practice research program. 2018. Available at http://www.mayo.edu/research/centers-programs/evidence-basedpractice-research-program/overview. Accessed April 5, 2018.
- Moher D, Liberati A, Tetzlaff J, et al; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Bmj.* 2009;339:b2535.
- Wells G, Shea B, O'Connell D, et al. *The Newcastle-Ottawa Scale* (NOS) for assessing the quality of nonrandomised studies in metaanalyses. 2017. Available at http://www.ohri.ca/programs/clinical_ epidemiology/oxford.asp. Accessed August 2, 2017.
- Sandner SE, Wieselthaler G, Zuckermann A, et al. Survival benefit of the implantable cardioverter-defibrillator in patients on the waiting list for cardiac transplantation. *Circulation*. 2001;104(12 Suppl 1): 1171–1176.

- 10. Zahn D, Weidner G, Beyersmann J, et al. Composite risk scores and depression as predictors of competing waiting-list outcomes: the waiting for a new heart study. *Transpl Int.* 2010;23(12):1223–1232.
- 11. Guleserian KJ, Schechtman KB, Zheng J, et al. Outcomes after listing for primary transplantation for infants with unoperated-on non-hypoplastic left heart syndrome congenital heart disease: a multi-institutional study. *J Heart Lung Transplant.* 2011;30(9):1023–1032.
- Morrow WR, Naftel D, Chinnock R, et al. Outcome of listing for heart transplantation in infants younger than six months: predictors of death and interval to transplantation. The pediatric heart transplantation study group. J Heart Lung Transplant. 1997;16(12):1255–1266.
- Hernández D, Castro de la Nuez P, Muriel A, et al. Peripheral vascular disease and death in southern European kidney transplant candidates: a competing risk modeling approach. *Transplantation*. 2017;101(6):1320–1326.
- Ow MM, Erasmus P, Minto G, et al. Impaired functional capacity in potential liver transplant candidates predicts short-term mortality before transplantation. *Liver Transpl.* 2014;20(9):1081–1088.
- Schwartz A, Schiano T, Kim-Schluger L, et al. Geographic disparity: the dilemma of lower socioeconomic status, multiple listing, and death on the liver transplant waiting list. *Clin Transplant.* 2014;28(10):1075– 1079. doi: 10.1111/ctr.12429
- Ferreira LG, Anastácio LR, Lima AS, et al. Predictors of mortality in patients on the waiting list for liver transplantation. *Nutr Hosp.* 2013;28(3):914–919.
- Lai JC, Feng S, Terrault NA, et al. Frailty predicts waitlist mortality in liver transplant candidates. *Am J Transplant*. 2014;14(8):1870–1879.
- Silberhumer GR, Hetz H, Rasoul-Rockenschaub S, et al. Is MELD score sufficient to predict not only death on waiting list, but also posttransplant survival? *Transpl Int.* 2006;19(4):275–281.
- Brandsaeter B, Broomé U, Isoniemi H, et al. Liver transplantation for primary sclerosing cholangitis in the nordic countries: outcome after acceptance to the waiting list. *Liver Transpl.* 2003;9(9):961–969.
- Reddy KR, O'Leary JG, Kamath PS, et al; North American Consortium for the Study of End-Stage Liver Disease. High risk of delisting or death in liver transplant candidates following infections: results from the North American Consortium for the study of end-stage liver disease. *Liver Transpl.* 2015;21(7):881–888.
- Walker NM, Stuart KA, Ryan RJ, et al. Serum ferritin concentration predicts mortality in patients awaiting liver transplantation. *Hepatology*. 2010;51(5):1683–1691.
- Belkin RA, Henig NR, Singer LG, et al. Risk factors for death of patients with cystic fibrosis awaiting lung transplantation. *Am J Respir Crit Care Med.* 2006;173(6):659–666.
- Liou TG, Adler FR, Cox DR, Cahill BC. Lung transplantation and survival in children with cystic fibrosis. N Engl J Med. 2008;359(5):e6.
- Selimovic N, Andersson B, Bergh CH, et al. Pulmonary hemodynamics as predictors of mortality in patients awaiting lung transplantation. *Transpl Int.* 2008;21(4):314–319.
- Pietra BA, Kantor PF, Bartlett HL, et al. Early predictors of survival to and after heart transplantation in children with dilated cardiomyopathy. *Circulation*. 2012;126(9):1079–1086.
- Tallaj JA, Pamboukian SV, George JF, et al. Have risk factors for mortality after heart transplantation changed over time? Insights from 19 years of cardiac transplant research database study. *J Heart Lung Transplant.* 2014;33(12):1304–1311.
- Owen JE, Bonds CL, Wellisch DK. Psychiatric evaluations of heart transplant candidates: predicting post-transplant hospitalizations, rejection episodes, and survival. *Psychosomatics*. 2006;47(3):213–222.
- Grady KL, White-Williams C, Naftel D, et al. Are preoperative obesity and cachexia risk factors for post heart transplant morbidity and mortality: a multi-institutional study of preoperative weight-height indices. Cardiac Transplant Research Database (CTRD) Group. *J Heart Lung Transplant*. 1999;18(8):750–763.
- Zuckermann AO, Ofner P, Holzinger C, et al. Pre- and early postoperative risk factors for death after cardiac transplantation: a single center analysis. *Transpl Int.* 2000;13(1):28–34.
- Lindelöw B, Bergh C, Lamm C, et al. Graft coronary artery disease is strongly related to the aetiology of heart failure and cellular rejections. *Eur Heart J.* 1999;20(18):1326–1334.
- Arora S, Jenum PA, Aukrust P, et al. Pre-transplant toxoplasma gondii seropositivity among heart transplant recipients is associated with an increased risk of all-cause and cardiac mortality. *J Am Coll Cardiol.* 2007;50(20):1967–1972.
- Lamour JM, Kanter KR, Naftel DC, et al; Cardiac Transplant Registry Database; Pediatric Heart Transplant Study. The effect of age, diagnosis,

and previous surgery in children and adults undergoing heart transplantation for congenital heart disease. *J Am Coll Cardiol.* 2009;54(2): 160–165.

- Anderson BM, Mytton JL, Evison F, et al. Outcomes after weekend admission for deceased donor kidney transplantation: a population cohort study. *Transplantation*. 2017;101(9):2244–2252.
- Laskin BL, Mitsnefes MM, Dahhou M, et al. The mortality risk with graft function has decreased among children receiving a first kidney transplant in the united states. *Kidney Int.* 2015;87(3):575–583.
- Barrantes F, Luan FL, Kommareddi M, et al. A history of chronic opioid usage prior to kidney transplantation may be associated with increased mortality risk. *Kidney Int.* 2013;84(2):390–396.
- Goldfarb-Rumyantzev AS, Sandhu GS, Barenbaum A, et al. Education is associated with reduction in racial disparities in kidney transplant outcome. *Clin Transplant.* 2012;26(6):891–899.
- Gueye AS, Chelamcharla M, Baird BC, et al. The association between recipient alcohol dependency and long-term graft and recipient survival. *Nephrol Dial Transplant*. 2007;22(3):891–898.
- Aalten J, Hoogeveen EK, Roodnat JI, et al. Associations between pre-kidney-transplant risk factors and post-transplant cardiovascular events and death. *Transpl Int.* 2008;21(10):985–991.
- Gill JS, Pereira BJ. Death in the first year after kidney transplantation: implications for patients on the transplant waiting list. *Transplantation*. 2003;75(1):113–117.
- Petersen E, Baird BC, Shihab F, et al. The impact of recipient history of cardiovascular disease on kidney transplant outcome. *Asaio J.* 2007;53(5):601–608.
- Patzer RE, Basu M, Larsen CP, et al. I choose kidney: a clinical decision aid for kidney transplantation versus dialysis treatment. *Transplantation*. 2016;100(3):630–639.
- Laging M, Kal-van Gestel JA, van de Wetering J, et al. A high comorbidity score should not be a contraindication for kidney transplantation. *Transplantation*. 2016;100(2):400–406.
- Browne S, Gill J, Dong J, et al. The impact of pancreas transplantation on kidney allograft survival. Am J Transplant. 2011;11(9): 1951–1958.
- Farrugia D, Cheshire J, Begaj I, et al. Death within the first year after kidney transplantation—an observational cohort study. *Transpl Int.* 2014;27(3):262–270.
- Ferro CJ, Karim A, Farrugia D, et al. Stroke-related hospitalization and mortality after a kidney allograft: a population-cohort study. *Exp Clin Transplant.* 2016;14(1):50–57.
- An JN, Ahn SV, Lee JP, et al. Pre-transplant cardiovascular risk factors affect kidney allograft survival: a multi-center study in Korea. *Plos One.* 2016;11(8):e0160607.
- Foster BJ, Dahhou M, Zhang X, et al. Association between age and graft failure rates in young kidney transplant recipients. *Transplantation*. 2011;92(11):1237–1243.
- Arend SM, Mallat MJ, Westendorp RJ, et al. Patient survival after renal transplantation; more than 25 years follow-up. *Nephrol Dial Transplant.* 1997;12(8):1672–1679.
- Ojo AO, Govaerts TC, Schmouder RL, et al. Renal transplantation in end-stage sickle cell nephropathy. *Transplantation*. 1999;67(2):291–295.
- Benfield MR, McDonald R, Sullivan EK, et al. The 1997 annual renal transplantation in children report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). *Pediatr Transplant*. 1999;3(2):152–167.
- Giral M, Foucher Y, Karam G, et al. Kidney and recipient weight incompatibility reduces long-term graft survival. *J Am Soc Nephrol.* 2010;21(6):1022–1029.
- Pavlakis M, Khwaja K, Mandelbrot D, et al. Renal allograft failure predictors after PAK transplantation: results from the new england collaborative association of pancreas programs. *Transplantation*. 2010;89(11):1347–1353.
- Wang LY, Zheng SS, Xu X, et al. A score model for predicting postliver transplantation survival in HBV cirrhosis-related hepatocellular carcinoma recipients: a single center 5-year experience. *Hepatobiliary Pancreat Dis Int.* 2015;14(1):43–49.
- Marques HP, Ribeiro V, Almeida T, et al. Long-term results of domino liver transplantation for hepatocellular carcinoma using the "double piggy-back" technique: a 13-year experience. *Ann Surg.* 2015;262(5):749–56. Discussion 756.
- Moon JI, Kwon CH, Joh JW, et al. Primary versus salvage living donor liver transplantation for patients with hepatocellular carcinoma: impact of microvascular invasion on survival. *Transplant Proc.* 2012;44(2):487–493.

- An HJ, Jang JW, Bae SH, et al. Serum C-reactive protein is a useful biomarker for predicting outcomes after liver transplantation in patients with hepatocellular carcinoma. *Liver Transpl.* 2012;18(12):1406–1414.
- 57. Silva M, Moya A, Berenguer M, et al. Expanded criteria for liver transplantation in patients with cirrhosis and hepatocellular carcinoma. *Liver Transpl.* 2008;14(10):1449–1460.
- Iwatsuki S, Dvorchik I, Marsh JW, et al. Liver transplantation for hepatocellular carcinoma: a proposal of a prognostic scoring system. *J Am Coll Surg.* 2000;191(4):389–394.
- Masuda T, Shirabe K, Ikegami T, et al. Sarcopenia is a prognostic factor in living donor liver transplantation. *Liver Transpl.* 2014;20(4):401–407.
- Kaido T, Ogawa K, Fujimoto Y, et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. *Am J Transplant.* 2013;13(6):1549–1556.
- Chen J, Xu X, Wu J, et al. The stratifying value of Hangzhou criteria in liver transplantation for hepatocellular carcinoma. *PLoS ONE*. 2014;9(3):e93128.
- Zhang M, Yin F, Chen B, et al. Posttransplant mortality risk assessment for adult-to-adult right-lobe living donor liver recipients with benign end-stage liver disease. *Scand J Gastroenterol*. 2012;47(7):842–852.
- Nuño J, Cuervas-Mons V, Vicente E, et al. Is liver transplantation an emergency or an elective surgical procedure? Analysis of risk factors related to early mortality in 139 liver transplant recipients. *Transplant Proc.* 1995;27(4):2321–2322.
- Yi NJ, Suh KS, Lee HW, et al. Improved outcome of adult recipients with a high model for end-stage liver disease score and a small-forsize graft. *Liver Transpl.* 2009;15(5):496–503.
- Elgend HM, El Moghazy WM, Uemoto S, et al. Pre transplant serum magnesium level predicts outcome after pediatric living donor liver transplantation. *Ann Transplant.* 2012;17(2):29–37.
- Darstein F, König C, Hoppe-Lotichius M, et al. Preoperative left ventricular hypertrophy is associated with reduced patient survival after liver transplantation. *Clin Transplant.* 2014;28(2):236–242.
- Batra S, Machicao VI, Bynon JS, et al; Pulmonary Vascular Complications of Liver Disease Group. The impact of left ventricular hypertrophy on survival in candidates for liver transplantation. *Liver Transpl.* 2014;20(6):705–712.
- Parikh A, Washburn KW, Matsuoka L, et al. A multicenter study of 30 days complications after deceased donor liver transplantation in the model for end-stage liver disease score era. *Liver Transpl.* 2015;21(9):1160–1168.
- Boyd SD, Stenard F, Lee DK, et al. Alloimmunization to red blood cell antigens affects clinical outcomes in liver transplant patients. *Liver Transpl.* 2007;13(12):1654–1661.
- Lewsey JD, Dawwas M, Copley LP, et al. Developing a prognostic model for 90-day mortality after liver transplantation based on pretransplant recipient factors. *Transplantation*. 2006;82(7):898–907.
- Li C, Wen TF, Yan LN, et al. Factors associated with early mortality after living-donor liver transplant. Exp Clin Transplant. 2015;13(1):62–67.
- Beckebaum S, Sotiropoulos GC, Klein CG, et al. Predictive factors of outcome in patients transplanted for hepatitis B. *Transplantation*. 2009;87(6):872–881.
- Belli LS, Burroughs AK, Burra P, et al. Liver transplantation for HCV cirrhosis: improved survival in recent years and increased severity of recurrent disease in female recipients: results of a long term retrospective study. *Liver Transpl.* 2007;13(5):733–740.
- Toussaint A, Weiss E, Khoy-Ear L, et al. Prognostic value of preoperative brain natriuretic peptide serum levels in liver transplantation. *Transplantation*. 2016;100(4):819–824.
- Hamaguchi Y, Kaido T, Okumura S, et al. Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation. *Liver Transpl.* 2014;20(11):1413–1419.
- Endo K, lida T, Yagi S, et al. Impact of preoperative uncontrollable hepatic hydrothorax and massive ascites in adult liver transplantation. *Surg Today.* 2014;44(12):2293–2299.
- Weismüller TJ, Fikatas P, Schmidt J, et al. Multicentric evaluation of model for end-stage liver disease-based allocation and survival after liver transplantation in germany–limitations of the "sickest first"-concept. *Transpl Int.* 2011;24(1):91–99.
- Weismüller TJ, Kirchner GI, Scherer MN, et al. Serum ferritin concentration and transferrin saturation before liver transplantation predict decreased long-term recipient survival. *Hepatology*. 2011;54(6):2114–2124.
- Dawwas MF, Lewsey JD, Watson CJ, et al; UK, Ireland Liver Transplant Audit. The impact of serum potassium concentration on mortality after liver transplantation: a cohort multicenter study. *Transplantation*. 2009;88(3):402–410.

- Plantier L, Skhiri N, Biondi G, et al. Impact of previous cardiovascular disease on the outcome of lung transplantation. *J Heart Lung Transplant.* 2010;29(11):1270–1276.
- Stephenson AL, Sykes J, Berthiaume Y, et al. Clinical and demographic factors associated with post-lung transplantation survival in individuals with cystic fibrosis. J Heart Lung Transplant. 2015;34(9):1139–1145.
- Smith PJ, Blumenthal JA, Carney RM, et al. Neurobehavioral functioning and survival following lung transplantation. *Chest.* 2014; 145(3):604–611.
- González-Castro A, Llorca J, Suberviola B, et al. Influence of nutritional status in lung transplant recipients. *Transplant Proc.* 2006;38(8): 2539–2540.
- Grauhan O, Siniawski H, Dandel M, et al. Coronary atherosclerosis of the donor heart–impact on early graft failure. *Eur J Cardiothorac Surg.* 2007;32(4):634–638.
- Conway J, Chin C, Kemna M, et al; Pediatric Heart Transplant Study Investigators. Donors' characteristics and impact on outcomes in pediatric heart transplant recipients. *Pediatr Transplant*. 2013;17(8): 774–781.
- Boffa C, van de Leemkolk F, Curnow E, et al. Transplantation of kidneys from donors with acute kidney injury: friend or foe? *Am J Transplant.* 2017;17(2):411–419.

- Gores PF, Gillingham KJ, Dunn DL, et al. Donor hyperglycemia as a minor risk factor and immunologic variables as major risk factors for pancreas allograft loss in a multivariate analysis of a single institution's experience. *Ann Surg.* 1992;215(3):217–230.
- Center for Medicare & Medicaid Services. 2017. Available at https:// www.cms.gov/Medicare/Provider-Enrollment-and-Certification/ GuidanceforLawsAndRegulations/Transplant-Laws-and-Regulations. html. Accessed April 11, 2018.
- Brar A, Stefanov DG, Jindal RM, et al. Mortality on the kidney waiting list and after transplantation in patients with peripheral arterial disease: an analysis of the united states renal data system. *Transplant Proc.* 2016;48(1):15–20.
- Schulze PC, Jiang J, Yang J, et al. Preoperative assessment of highrisk candidates to predict survival after heart transplantation. *Circ Heart Fail.* 2013;6(3):527–534.
- Castleberry C, White-Williams C, Naftel D, et al. Hypoalbuminemia and poor growth predict worse outcomes in pediatric heart transplant recipients. *Pediatr Transplant*. 2014;18(3):280–287.
- Delgado JF, Gómez-Sánchez MA, Sáenz de la Calzada C, et al. Impact of mild pulmonary hypertension on mortality and pulmonary artery pressure profile after heart transplantation. J Heart Lung Transplant. 2001;20(9):942–948.