Disclosures

Jonathan Miller, PhD Biostatistician Hennepin Healthcare Research Institute, Minneapolis, MN

I have no financial relationships to disclose within the past 12 months relevant to my presentation.

My presentation does not include discussion of off-label or investigational use.

This work was supported wholly or in part by HRSA contract 75R60220C00011. The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

SR TR

SCIENTIFIC REGISTRY OF TRANSPLANT RECIPIENTS

Prediction of Cause, Age, and Location-Consistent Deaths

Jonathan M. Miller, David Zaun, Nick L. Wood, Grace R. Lyden, Ryutaro Hirose, Ajay K. Israni, Jon J. Snyder

Background

- Cause, age, and location-consistent (CALC) deaths, calculated from the Centers for Disease Control and Prevention (CDC) Multiple Cause of Death dataset, has become a popular measure for estimating donor potential in an organ procurement organization (OPO) donation service area (DSA).
- CDC data are published with a 2-year lag, meaning data available in 2023 are for deaths from 2021.
- The data lag limits OPOs' ability to track impacts of changes to their practice in nearreal time.
- This study presents a method to predict OPOs' current CALC deaths using Scientific Registry of Transplant Recipients (SRTR) data.

Methods

- <u>Hierarchical linear regression models</u> estimated monthly CALC deaths by DSA January 2019–December 2021.
- <u>Model predictors</u>: Year, number of deaths referred to the OPO in the month, number of imminent and eligible deaths together reported by the OPO in the month, month of the year, random intercept for the OPO.

Results - Equation

CALC = -455.1737+ (0.000261 * Number of Referrals [Month]) + (0.02579

* Number of Imminent or Eligible Deaths $\left[\frac{DNR}{Month}\right]$

+ (0.2307 * Year) + Month Coefficient + OPO Coefficient

Results – Month Coefficients

Month	Coefficient				
January	0				
February	-0.4951				
March	-0.0881				
April	-0.4099				
May	-0.1751				
June	-0.2689				
July	-0.1074				
August	-0.1024				
September	-0.3136				
October	-0.1182				
November	-0.2082				
December	0.0421				

Results – OPO Coefficients

0P0	Coefficient	OPO	Coefficient	0P0	Coefficient	0P0	Coefficient	0P0	Coefficient
ALOB	0.4046	GALL	3.0562	MSOP	-1.6614	OHLB	-0.3624	TXGC	3.6076
AROR	-1.8303	HIOP	-4.9771	MWOB	-0.2009	OHLC	-3.1442	TXSA	1.7929
AZOB	1.9387	IAOP	-2.3718	NCCM	-2.3919	OHLP	-1.2600	ТХЅВ	3.8609
CADN	2.8987	ILIP	3.6420	NCNC	1.4241	OHOV	-3.5406	UTOP	-3.0036
CAGS	-2.6209	INOP	1.8470	NEOR	-4.2587	ОКОР	0.0713	VATB	1.0592
CAOP	7.5660	KYDA	0.7955	ΟΤርΝ	-0.1426	ORUO	0.0046	WALC	2.6508
CASD	-2.7195	LAOP	0.2509	NMOP	-3.8916	PADV	3.7639	WIDN	-3.0280
CORS	-0.5393	MAOB	3.4336	NVLV	-2.5083	PATF	1.5848	WIUW	-2.1285
FLFH	-0.7867	MDPC	2.0373	NYAP	-3.5577	PRLL	-2.3938		
FLMP	1.7468	MIOP	3.4255	NYFL	-3.3491	SCOP	0.3788		
FLUF	0.4677	MNOP	1.0042	NYRT	3.6019	TNDS	3.5399		
FLWC	1.9583	Moma	-0.2176	NYWN	-4.6199	TNMS	-2.3072		

Results – Calibration

Conclusion

• Prediction of CALC deaths from SRTR data enables OPOs to estimate their donor potential in near-real time.

CDRG

Transplantation

Director Jon Snyder, PhD, MS

Medical Ajay Israni, MD, MS Director

Surgical Ryutaro Hirose, MD Director

Program Caitlyn Nystedt, MPH, PMP Manager

Sr. Administrative Sydney Kletter Assistant Marketing & Mona Shater, MA Comm. Amy Ketterer, SMS Tonya Eberhart

ProjectKatherine Audette, MSManagersBryn Thompson, MPHKatie Siegert, MPH

Project Avery Cook Coordinator

> Medical Anna Gillette Editor

Sr. Manager, David Zaun, MS Biostatistics

Sr. Biostatisticians Jon Miller, PhD, MPH Grace Lyden, PhD Nick Wood, PhD

Biostatisticians David Schladt, MS Tim Weaver, MS Yoon Son Ahn, MS

> IT, Web, Ryan Follmer Database, Patrick Johnson Simulation Joshua Pyke, PhD Eugene Shteyn, MS

SCIENTIFIC REGISTRY 으 TRANSPLANT RECIPIENTS

Contact us: SRTR@SRTR.org

Follow us:

Scientific Registry of Transplant Recipients

