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1 Introduction

This document describes calculation of rates in a time-to-event setting for Scientific Reg-
istry of Transplant Recipients (SRTR) simulation analysis using the OASim software. Prior
simulation analysis has presented “unadjusted” rate calculations, and in upcoming stud-
ies we will be incorporating “adjusted” rate calculations into the analysis. Here we de-
scribe in detail both calculations, how each calculation is applied in the simulation con-
text, and, finally, how the methods are incorporated into a broader simulation study
design.

For this discussion, we will only consider “rates” to be values that are expressed as
the number of events per unit time; other values called rates (eg, percentages) will not
be considered rates here. At all points in this discussion, the terms “hazard” and “rate”
could be used interchangeably.

2 Background

Rates in the setting of a transplant waiting list are a competing risk time-to-event prob-
lem. All observations contribute some amount of time until either censoring or one
event; the events are mutually exclusive and absorbing states.

2.1 Subscript Definitions

Each observation, indexed by i, can have one and only one outcome, z, or no outcome
(censored observation). In the context of waitlist rates, each candidate is an observation
and the outcomes are transplant, death, still waiting (censored), and possibly removal
for other reasons, which may be treated as a terminal event or a censoring event. Each
observation also has a set of covariate levels, indexed by j as in xi,j , eg, blood type =
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A or age-at-listing in [18,35); we will also use the term “subgroup” to refer to a specific
covariate level, xi,j .

Observation : i ∈ (1, 2, ...N)
Covariate level : j ∈ (1, 2, ..., J)

Outcome : z ∈ (1, 2, ...Z)
(1)

2.2 Metrics

Each observation contributes time until an event or censoring, ti, to the rate calculation.
Each observation can contribute up to one count, Ii,z , to the total count of outcome z.

Indicator variable for observation i with outcome, z : Ii,z

Time to (mutually exclusive) event or censoring for observation i : ti

(2)

In cases where a specific subgroup is being considered, the subscript j is used.

Ii,z where xi,j = 1 : Ii,j,z

ti where xi,j = 1 : ti,j
(3)

2.3 Covariates

Each observation i has a set of covariates levels that are combined into an overall design
matrix, X.

1 × J vector of covariates for observation i : xi

N × J design matrix : X =


x1
x2
...
xN


(4)

Note that, in this framing, X is a “wide” matrix of 0/1 indicator values for each sub-
group, j.
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3 Rate Calculations

3.1 Empirical Calculations

Below is a simple “unadjusted” rate calculation. This type of unadjusted rate calculation
has been used in past simulation analysis as well as the waitlist rates presented in the
SRTR Annual Data Report. Note that the rate for outcome type q, hq, takes into account
the time contributed by patients who experience other outcome types z, z ̸= q.

This calculation can also be applied to entire cohorts, in which case the covariate
subscript j is unnecessary.

Nj,z =
∑
i

Ii,j,z

Total T imej = Tj =
∑
i

ti,j

Ratej,z = hj,z =Nj,z

Tj

=
∑

i Ii,j,z∑
i ti,j

(5)

3.1.1 Commentary

This framing is an “average” rate across some period of observation. In particular, it
is “averaged” over the observation window; that is, the rate is not a function of time.
However, this could be amatter of interpretation; you do not need to take this “averaged”
view and just interpret the calculated rate value as the observed rate for the period.

This is similar to calculating an arithmetic mean over some population, say, the aver-
age height of a group of people in a room. In this case, the average height of that group
of people could be treated as just an empirical value, where you do not need to invoke
the idea of a larger population or “target” value that the calculated mean is estimating1.
The average is just the average. It can be useful to take extra steps like assuming some
larger population and probability distribution in order to do inference, but those would
be additional steps beyond the simple arithmetic mean calculation.

1The lack of a “target” could be disputed. Even without invoking the idea of a larger population for height, there could be a
theoretical value for the mean of the group of people that our estimate deviates from because of measurement error. But that
is not important here.
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3.2 Modeled Rates

Regression models for rates can be framed as a survival proportional hazards model, or
Poisson regression (with offset) when estimating constant rates. Both of these regres-
sion models are “adjusted” in the sense that they can accommodate multiple covariates.

For our simulation analysis, we are calculating overall (non time-varying) rates for the
entire simulation period; that is, we are calculating constant rates (see the “Applications
to Simulation” section for more details). Given this, Poisson regression is an appropriate
choice and will be discussed here.

3.2.1 Poisson Rate Regression Model

Poisson regression estimates an average rate across the observation period; or, the
model assumes a constant event rate. The estimates that come out of the fitted model
are for the coefficient vectors, θz for each hz . The point of this model is to estimate the
effect (θj,z) of each covariate in X, adjusting for other factors, on the rate. Note that the
events indexed by z (other than censoring) are still treated as competing events in this
framing.

hz(X) = exp(Xθz) (6)

3.2.2 Calculating a Rate

The results of the regression model above are estimates of the coefficient vectors, θ̂z .
To arrive at an estimate of a rate, some input dataset is required, W. Given some input
dataset,W, rate estimates can be directly calculated from the Poisson regression results
as ĥz = exp(Wθ̂z)2.

3.2.3 Calcuated Rates via Standardization

To calculate a rate for each subgroup level within a covariate based on the Poisson regres-
sion results, we will use standardization methods using the entire cohort as a reference
population in order to calculate marginal rates. The adjusted rates are counterfactuals
and are interpreted as the rate for each subgroup of interest had that group had the
same distribution of all other adjusting factors as the overall population.

2This is an additional reason for choosing the Poissonmodel over the proportional hazardsmodel. The proportional hazards
model would have required an additional step of estimating a “baseline hazard.”
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Steps are described at the scenario/iteration level, for each subgroup of interest j,
eg, blood type = A or a binned continuous variable like age at listing in [18, 35).

1. Create a reference design matrix, Wj , for the subgroup of interest, j, by setting
every record in column xj of X to the subgroup of interest.

Wj ≡X, s.t. xi,j is set to 1, ∀ i (7)

2. Calculate vector of rates for this subgroup via the Poisson regression results, θ̂z ,
for the outcome of interest, z.

ĥj,z =exp(Wj θ̂z) (8)

3. Average the vector of rates (across the observed distribution of all other adjusting
factors) to arrive at a single marginal rate value for subgroup j.

¯̂
hj,z = 1

N

∑
i

ĥi,j,z (9)

These steps apply for a single subgroup level j, eg, blood type = A. To create a set of
rates for the overall blood type metric, the calculation would be repeated for each blood
type; the calculations are linked by the common regression coefficients for the outcome,
θ̂z .
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4 Applications to Simulation

The simulation problem introduces additional layers of complexity for the presentation
and analysis of rates. In historic (and presumably upcoming) simulation studies, the com-
parison is across simulated scenarios (different allocation policies), where the metrics
being compared are an average value over multiple stochastic iterations. The transplant
rate is a fundamental metric for all studies, where it is the key metric for analysis and, in
turn, is the key metric for all simulation model building.

The methods discussed for creating adjusted models in the “Modeled Rates” subsec-
tion are generally used to make statements about different subgroups within a single
cohort; inferences are made across a range (or levels) of a single covariate, or between
covariates. The key point is that the inferential comparisons are generally made within
a single model, not generally across models as is the case in the simulation setting.

In simulation analysis, we are concernedwith calculating rates for subgroups of inter-
est over the simulation period; the rates presented are an attribute of the overall organ
allocation system, not necessarily individuals on the list. Additionally, unless there is a
specific mechanism to indicate the rate(s) vary over the simulation, there is no need to
model the rates as time varying. Given these considerations, we present the average
rates over the simulation cohort period; ie, we present a constant rate hz , not a time-
varying rate hz(t).

4.1 Historic Analysis: Unadjusted Rates (Empirical Calculations)

In recent SRTR simulation analysis, rates were calculated with the formulas described
in the “Empirical Calculations” subsection. The simple calculation there was applied to
a single cohort; the calculations were repeated in each different subgroup/stratification
group. Figure 1 is an example from the KIPA2023_01 data request. In this figure, each
panel (facet) has repeated the rate calculation independently for each organ group (KI,
KP, PA). In the figure, only a single outcome, z = transplant, is shown, while the cor-
responding rates for the other complementary outcomes besides transplant (death, re-
moval, etc) are not.

Each dot (and bars) represents an aggregate measure(s) across 10 simulated
iterations: the mean, minimum (min), and maximum (max). That is, for each simulated
scenario, the rate calculation was calculated for the cohort group for each iteration
independently, and then these simulation/iteration level rates were aggregated to
mean/min/max.
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Figure 1: Example Rate Figures from KIPA2023_01

4.1.1 Commentary

An independent calculation for each simulation/iteration is an important feature of the
design that should be maintained regardless of the rate formula being used; the model
used for an adjusted rate should also be calculated (ie, refit) at the simulation/iteration
level and then those results aggregated (via some method) across the simulated itera-
tions.

This framing/calculation does not need to be interpreted as a model. As discussed
above, these rates are/were presented in a purely declarative way; they are not pre-
sented as “estimates” of some theoretical value, rather they are presented only as de-
scriptive measures of what occurred in the simulated results. The parsimony of this
framing is a benefit. No assumptions are needed or made, and the results are easily
interpretable. Since there are no assumptions made about the calculations, no diagnos-
tics are needed at the simulation/iteration level3. Furthermore, there is a nice correspon-
dence between the figures in the SRTR Annual Data Report.

3We could apply “guardrails” by using rules for minimum group size, or other similar checks. Note that these type of steps
are not diagnostics in that they are not meant to assess model quality in light of the modeling assumptions, because there are
no assumptions.
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5 Adjusted Rates in Simulation

Here we describe specific steps needed to calculate adjusted rates in a simulation study.

5.1 Definition of X
The definition of which factors will be “adjusted” for (ie, which covariates will be included
in X) is a primary step in the simulation analysis study design. Because waitlist rates
will be a primary analysis metric, they also need to be a primary metric for submodel
building and operational validation (OV), and, in turn, need to be defined prior to any
model building.

The a priori-defined set of covariates that are included in the model could be arrived
at in a number of ways. This could be based on committee, SRTR senior staff, and sta-
tistical inputs, or could be an empirical study to determine important adjusting factors.
This should largely correspond to the set of figures planned for the final analysis report.

5.2 Aggregation Across Simulation Iterations

After rates have been calculated for each outcome and subgroup,
¯̂
hj,z , at the sce-

nario/iteration level, the rates need to be aggregated across the simulation iterations.
In prior simulation studies, this has been a simple arithmetic mean across the simulated
iterations. This will likely be the choice for future studies as well, with summary of the
min and max value across iterations.

5.3 Diagnostics Across Simulation Iterations

Diagnostics for the regression models need to be considered, but the problem is com-
plicated in the simulation setting. A separate regression model(s) needs to be fit for
each scenario/iteration, and there are corresponding diagnostic measures at this level.
However, it is likely not practical to evaluate each model in isolation. Given this, the sim-
ulation study design needs to specify some method to “aggregate” the evaluation of the
specific model fits across iterations.

5.4 Operational Validation

The OV process can encompass a broad range of approaches that holistically evaluate
the performance of a simulation study. Given this, we will consider the limited OV sce-
nario where the “best” collection of submodels (COS) is selected froma range of potential
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COSs4. Here the adjusted (transplant) rate is the primary assessment metric comparing
the different COSs to a historic baseline “target” across a range of grouping factors.

Under this study design, the assessment metric itself (adjusted rate) is a modeled
value, and so the quality of the model(s) needs to be built into the OV design.

5.4.1 Historic Rate Calculation

During OV, adjusted rates for a historical target should be calculated and the diagnostics
for this single model examined. The historic analysis is performed in order to make the
best representation of the historic cohort, not to select between potential COSs.

At this stage, diagnostics should be used to inform the rate modeling and help iden-
tify deficiencies in the adjusted rate model (eg, categorical bins with too few counts may
lead to poor diagnostics and the bins may need to be resized5). That is, the definition of
Xmay be amended in light of the historical ratemodel diagnostics, provided the original
analytic intent of X is preserved.

The results of this model building stage will be a finalized definition of X that will be
used for all subsequent simulation analysis including the following OV steps as well as
the final analysis report. The set of diagnostic measures used in this stage of the analysis
will also be preserved in subsequent steps in the analysis.

5.4.2 Submodel Scenario Rate Calculations

Many of the same considerations around iterations and aggregation from the “Diagnos-
tics Across Simulation Iterations” subsection are applicable in the OV situation, and in
the same way the assessment of model quality needs to be an important part of the OV
design prior to starting modeling.

In OV, adjusted rate diagnostics across iterations for a single COS should perform
favorably in comparison to the historic rate model’s diagnostics and considered when
selecting the best COS. A COS whose averaged rate (over iterations) performed better
than that of another COS may not be preferable if there is wide variability in model qual-
ity across iterations. In particular during OV, nonconvergence6 of rates during a single
iteration should likely be a disqualifying result for a given COS. Diagnostic issues at this

4Under this OV design, each COS is treated just like a scenario in the example figures above, and the same figures used for
the final analysis report are used for the OV steps.

5Of note, the “binning” of continuous covariates into subgroups that we have historically done in simulation analysis may
translate into risk-adjustment models that are more flexible and therefore fit better, due to not imposing linearity on all con-
tinuous covariates.

6“Nonconvergence” is used a broad sense here, and is intended to include anymodel deficiencies that would be disqualifying.

page 9 of 13



 

HRSA Contract # HHSH75R60220C00011 COR: Shannon Dunne, JD 

stage of the analysis only indicate deficiencies in a given COS not deficiencies in the over-
all adjusted rate model, because the form, as defined byX, was finalized in the “Historic
Rate Calculation” stage.

5.5 Diagnostics of Simulated Scenarios

At this stage in the analysis, when a baseline and proposed scenarios are being simu-
lated and the results analyzed, diagnostics of the rate calculations again need to be ex-
amined. All considerations related to iterations from the “Diagnostics Across Simulation
Iterations” section apply here.

The diagnostic results of the simulated scenarios now inform the interpretation of
the rate estimates, and are not used for any sort of “selection.” That is, the diagnostics
are used as usual to quanitify the quality of the rate estimates. A simulated scenariomay
need to be considered as “noninterpretable” if the rates are not able to be estimatedwith
consistent quality across iterations.

Some potential ideas for formalizing diagnostic analysis:

• determine thresholds for whether or not a simulation scenario can be interpreted
for analysis based on standard regression results

– thresholds may apply across iterations where the overall quality needs to
be above some level

– thresholds may also apply at the iteration level, where a single iteration
that has poor diagnostics may lead to the scenario overall being noninter-
pretable

• aggregate P values or overall fit metrics like Akaike information criterion across
iterations to help quantify a simulation scenario’s rate estimates quality

• do not aggregate and examine all goodness-of-fit statistics and diagnostic plots,
perhaps with faceting by each iteration
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6 Extensions of a Calculated Rate

6.1 Cumulative Incidence

From “Survival and Event History Analysis” by Aalen et al, a cumulative incidence func-
tion (probability) for each event is derived directly from the rate function definitions and
relationships:

Fz(t) =
∫ t

0
hz(t)e−

∫ t

0
∑

k hk(t)dtdt (10)

Where Fz(t) is a regular probability function (cumulative distribution function) for
each event type.

Note that this is not an estimated quantity (yet). This is purely amathematical deriva-
tion from the definitions of the rates, hz . The probability associated with each event,
Fk, is a function not only of that event’s rate function, hz , but all other event rates via∑

k hk(t).

6.1.1 Cumulative Incidence with a Constant Rate

Starting from equation (10), what is a formula for cumulative incidence at time t if all
rates are constant, hz(t) = hz, ∀t, z?

Fz(t) = hz

∫ t

0
e−t

∑
k hkdt

= −hz∑
k hk

e−t
∑

k hk − −hz∑
k hk

e−0
∑

k hk

= −hz∑
k hk

e−t
∑

k hk + hz∑
k hk

= hz∑
k hk

(1 − e−t
∑

k hk)

(11)

At this point, a cumulative incidence estimate can be calculated by simply plugging in
a rate estimate as described above for the unadjusted case, equation (5), or the adjusted
case, equation (9).

F̂z(t) = ĥz∑
k ĥk

(1 − e−t
∑

k ĥk) (12)
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This is a simple formula for a cumulative incidence in a competing risk framing under
constant (hazard) rates. This is internally consistent with the earlier rate estimates, and
interpretable as “given these average rates, we would see these cumulative incidence
functions”. Or perhaps, the rates are treated as the driver that leads to the resulting
cumulative incidence.
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