

SCIENTIFIC
REGISTRY OF
TRANSPLANT
RECIPIENTS

Historical Priors for Bayesian Assessment of Transplant Program Performance

<u>Grace R. Lyden</u>, Maria Masotti, Jonathan M. Miller, Nicholas L. Wood, David Zaun, Jon J. Snyder, *Scientific Registry of Transplant Recipients, Hennepin Healthcare Research Institute, Minneapolis, MN, USA*

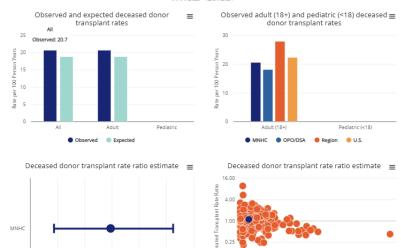
Disclosures

Grace Lyden, PhD Hennepin Healthcare Research Institute, Minneapolis, MN

I have no financial relationships to disclose within the past 12 months relevant to my presentation. The ACCME defines 'relevant' financial relationships as financial relationships in any amount occurring within the past 12 months that create a conflict of interest.

My presentation does not include discussion of off-label or investigational use.

I do not intend to reference unlabeled/unapproved uses of drugs or products in my presentation.


This work was supported wholly or in part by HRSA contract 75R60220C00011. The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the Department of HHS, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Background

- The Scientific Registry of Transplant Recipients (SRTR) publishes transplant program evaluations every 6 months
- Observed-to-Expected (O-to-E) ratios for:
 - Graft failures, pretransplant deaths, accepted offers, transplants, etc
 - "Expected" is derived from national riskadjusted models

Deceased Donor Transplant Rates

Estimated Transplant Rate Ratio

Person Years

Other Centers MNHC

Background

- Bayesian methodology:
 - Prior for rate ratio: gamma(2,2)
 - Prior mean = 1 (as expected)
 - Posterior for rate ratio: gamma(O+2, E+2)
 - Posterior mean: (O+2) / (E+2)
 - Shrinks O/E ratio toward 1
- Posterior distribution → Tier assignment
 - (Tier 1 = worst, Tier 5 = best)

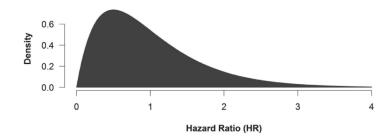
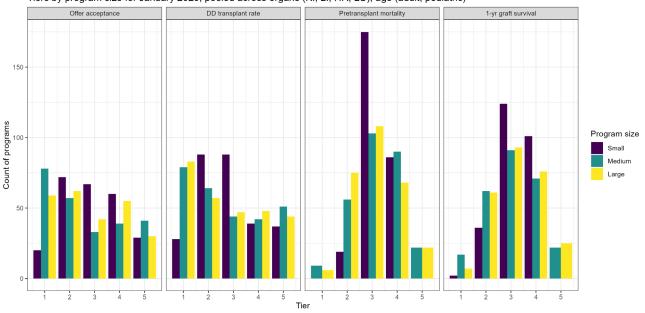


Figure 3: Gamma prior with mean of 1.0 and variance of 0.5 (SD = 0.71). The hazard ratio for each program is on the x-axis. A hazard ratio of 1 indicates a program that is performing exactly as expected and a hazard ratio of 2 a program with twice as many events as expected. The y-axis (labeled "Density") shows how frequent we believe this hazard ratio to be across all programs.



Motivation: Small Programs

- Gamma(2,2) prior pulls programs toward a mean of 1 (performing as expected)
 - Small programs have fewer observed data to pull their evaluations away from 1
- → More difficult for small programs to achieve the top tier

Motivation: Small Programs

Methods: Historical Priors

Define O_{past} and E_{past} :

 O_{past} : Observed count of events from most recent nonoverlapping cycle

 E_{past} : Expected count of events from most recent nonoverlapping cycle

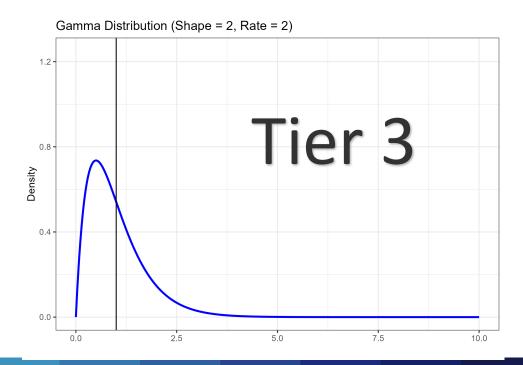
Proposed Methodology:

Prior is an average of gamma(2,2) and gamma($O_{past} + 2$, $E_{past} + 2$):

gamma(
$$\frac{O_{past}}{2} + 2, \frac{E_{past}}{2} + 2$$
)

Posterior is therefore:

gamma(0 +
$$\frac{o_{past}}{2}$$
 + 2, $E + \frac{E_{past}}{2}$ + 2)


Example

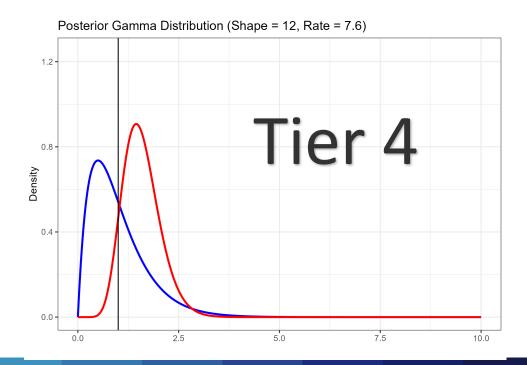
• This is a trajectory of offer acceptance evaluations for a small adult heart program:

Cycle	Date range	Observed offers accepted	Expected offers accepted	Published SRTR tier rating (1-5)
July 2023	January 2022–December 2022	9	3.6	5
January 2024	July 2022–June 2023	14	7.4	4
July 2024	January 2023–December 2023	14	7.5	4
January 2025	July 2023–June 2024	10	5.6	4

Example: Current Methodology

Prior: gamma(2,2)

Example: Current Methodology

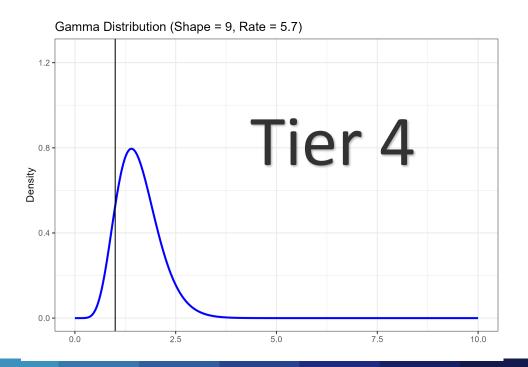

Prior: gamma(2,2)

Observed: 10

Expected: 5.6

 \rightarrow

Posterior: gamma(10+2, 5.6+2)


Example: Historical Priors

In January 2024 cycle:

Observed: 14

Expected: 7.4

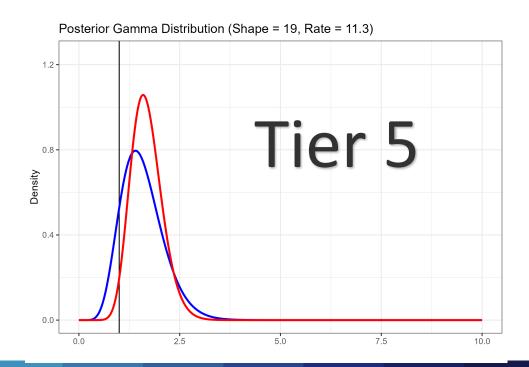
Prior: gamma(14/2 + 2, 7.4/2 + 2) = gamma(9, 5.7)

Example: Historical Priors

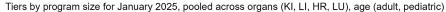
In January 2024 cycle:

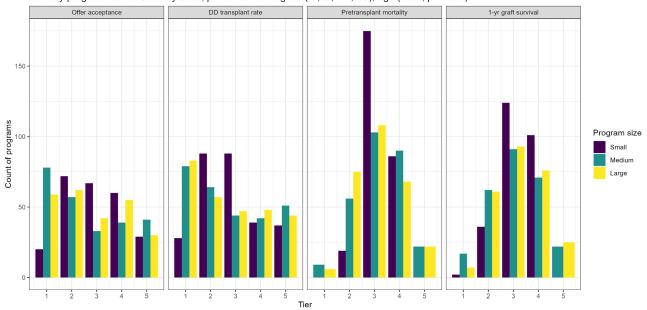
Observed: 14

Expected: 7.4

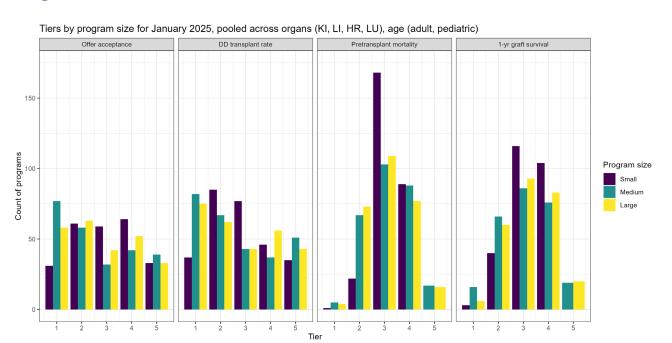

Prior: gamma(9, 5.7)

Observed: 10


Expected: 5.6


 \rightarrow

Posterior: gamma(10+9, 5.6+5.7)



January 2025 Tiers

January 2025 Tiers with Historical Priors

Simulation Results

Strengths of historical priors

- Tiers more stable over time, especially if program performance is constant over time; programs do not "bounce" around tiers from cycle to cycle
- More likely to assign Tier 5 to a small program that performs consistently well over time
- More likely to flag a small program that consistently performs poorly

Weaknesses of historical priors

- Less likely to flag a small program that recently got worse (ie, historical performance was better than current performance)
- Less likely to assign Tier 5 to a small program that recently improved (ie, cannot jump into Tier 5)

Debatable whether these are weaknesses or strengths!

Conclusions

Use of historical priors would:

- Increase precision (more informative prior)
- Shift smaller transplant programs toward outer tiers based on past performance
- Align more closely with Bayesian principles
- Perhaps enable smaller programs to achieve the top tier

Community input and Membership and Professional Standards Committee (MPSC) feedback will be essential to determine:

 Is it appropriate for historical data (from a program's most recent nonoverlapping cycle) to influence the program's current evaluations and tier ratings?

Transplantation

Director	Jon Snyder, PhD, MS	Marketing & Comm.	Mona Shater, MA	Sr. Manager, Biostatistics	David Zaun, MS
Deputy Director	Allyson Hart, MD, MS		Amy Ketterer Tonya Eberhard	Biostatisticians	Jon Miller, PhD, MPH Grace Lyden, PhD
Surgical Director	Ryutaro Hirose, MD	Project Managers	Bryn Thompson, MPH Katie Siegert, MPH		Maria Masotti, PhD David Schladt, MS Yoon Son Ahn, MS
Medical Director	Roslyn Mannon, MD	Medical Editor	Avery Cook, MPH, MSW Anna Gillette	IT, Web, Database, Simulation	Nick Wood, PhD Ryan Follmer
Program Manager	Caitlyn Nystedt, MPH, PMP	Research Office Manager	Sydney Kletter Sharma		Patrick Johnson Dan Larson Joshua Pyke, PhD
					Eugene Shteyn, MS

Tim Weaver, MS

Nonoverlapping cycles, for January 2025

• Offer acceptance: 1-year cohorts

July 2022 June 2023 July 2023 June 2024

Transplant rate and pretransplant mortality: 2-year cohorts

July 2020 June 2022 July 2022 June 2024

1-year graft survival: 2.5-year cohorts

January 2019 June 2021 July 2021 December 2023